summaryrefslogtreecommitdiff
path: root/SRC/dlauu2.f
blob: 1e6bdfecd8c2a63b4f702ec35ddbfbae6761c444 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
      SUBROUTINE DLAUU2( UPLO, N, A, LDA, INFO )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  DLAUU2 computes the product U * U**T or L**T * L, where the triangular
*  factor U or L is stored in the upper or lower triangular part of
*  the array A.
*
*  If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
*  overwriting the factor U in A.
*  If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
*  overwriting the factor L in A.
*
*  This is the unblocked form of the algorithm, calling Level 2 BLAS.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the triangular factor stored in the array A
*          is upper or lower triangular:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The order of the triangular factor U or L.  N >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the triangular factor U or L.
*          On exit, if UPLO = 'U', the upper triangle of A is
*          overwritten with the upper triangle of the product U * U**T;
*          if UPLO = 'L', the lower triangle of A is overwritten with
*          the lower triangle of the product L**T * L.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -k, the k-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I
      DOUBLE PRECISION   AII
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DDOT
      EXTERNAL           LSAME, DDOT
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEMV, DSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLAUU2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( UPPER ) THEN
*
*        Compute the product U * U**T.
*
         DO 10 I = 1, N
            AII = A( I, I )
            IF( I.LT.N ) THEN
               A( I, I ) = DDOT( N-I+1, A( I, I ), LDA, A( I, I ), LDA )
               CALL DGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
     $                     LDA, A( I, I+1 ), LDA, AII, A( 1, I ), 1 )
            ELSE
               CALL DSCAL( I, AII, A( 1, I ), 1 )
            END IF
   10    CONTINUE
*
      ELSE
*
*        Compute the product L**T * L.
*
         DO 20 I = 1, N
            AII = A( I, I )
            IF( I.LT.N ) THEN
               A( I, I ) = DDOT( N-I+1, A( I, I ), 1, A( I, I ), 1 )
               CALL DGEMV( 'Transpose', N-I, I-1, ONE, A( I+1, 1 ), LDA,
     $                     A( I+1, I ), 1, AII, A( I, 1 ), LDA )
            ELSE
               CALL DSCAL( I, AII, A( I, 1 ), LDA )
            END IF
   20    CONTINUE
      END IF
*
      RETURN
*
*     End of DLAUU2
*
      END