1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
|
*> \brief \b DLASDA
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition
* ==========
*
* SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
* DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
* PERM, GIVNUM, C, S, WORK, IWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
* ..
* .. Array Arguments ..
* INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
* $ K( * ), PERM( LDGCOL, * )
* DOUBLE PRECISION C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
* $ E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
* $ S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
* $ Z( LDU, * )
* ..
*
* Purpose
* =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> Using a divide and conquer approach, DLASDA computes the singular
*> value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
*> B with diagonal D and offdiagonal E, where M = N + SQRE. The
*> algorithm computes the singular values in the SVD B = U * S * VT.
*> The orthogonal matrices U and VT are optionally computed in
*> compact form.
*>
*> A related subroutine, DLASD0, computes the singular values and
*> the singular vectors in explicit form.
*>
*>\endverbatim
*
* Arguments
* =========
*
*> \param[in] ICOMPQ
*> \verbatim
*> ICOMPQ is INTEGER
*> Specifies whether singular vectors are to be computed
*> in compact form, as follows
*> = 0: Compute singular values only.
*> = 1: Compute singular vectors of upper bidiagonal
*> matrix in compact form.
*> \endverbatim
*>
*> \param[in] SMLSIZ
*> \verbatim
*> SMLSIZ is INTEGER
*> The maximum size of the subproblems at the bottom of the
*> computation tree.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The row dimension of the upper bidiagonal matrix. This is
*> also the dimension of the main diagonal array D.
*> \endverbatim
*>
*> \param[in] SQRE
*> \verbatim
*> SQRE is INTEGER
*> Specifies the column dimension of the bidiagonal matrix.
*> = 0: The bidiagonal matrix has column dimension M = N;
*> = 1: The bidiagonal matrix has column dimension M = N + 1.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension ( N )
*> On entry D contains the main diagonal of the bidiagonal
*> matrix. On exit D, if INFO = 0, contains its singular values.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is DOUBLE PRECISION array, dimension ( M-1 )
*> Contains the subdiagonal entries of the bidiagonal matrix.
*> On exit, E has been destroyed.
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*> U is DOUBLE PRECISION array,
*> dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
*> if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
*> singular vector matrices of all subproblems at the bottom
*> level.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER, LDU = > N.
*> The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
*> GIVNUM, and Z.
*> \endverbatim
*>
*> \param[out] VT
*> \verbatim
*> VT is DOUBLE PRECISION array,
*> dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
*> if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT**T contains the right
*> singular vector matrices of all subproblems at the bottom
*> level.
*> \endverbatim
*>
*> \param[out] K
*> \verbatim
*> K is INTEGER array,
*> dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
*> If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
*> secular equation on the computation tree.
*> \endverbatim
*>
*> \param[out] DIFL
*> \verbatim
*> DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ),
*> where NLVL = floor(log_2 (N/SMLSIZ))).
*> \endverbatim
*>
*> \param[out] DIFR
*> \verbatim
*> DIFR is DOUBLE PRECISION array,
*> dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
*> dimension ( N ) if ICOMPQ = 0.
*> If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
*> record distances between singular values on the I-th
*> level and singular values on the (I -1)-th level, and
*> DIFR(1:N, 2 * I ) contains the normalizing factors for
*> the right singular vector matrix. See DLASD8 for details.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is DOUBLE PRECISION array,
*> dimension ( LDU, NLVL ) if ICOMPQ = 1 and
*> dimension ( N ) if ICOMPQ = 0.
*> The first K elements of Z(1, I) contain the components of
*> the deflation-adjusted updating row vector for subproblems
*> on the I-th level.
*> \endverbatim
*>
*> \param[out] POLES
*> \verbatim
*> POLES is DOUBLE PRECISION array,
*> dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
*> if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
*> POLES(1, 2*I) contain the new and old singular values
*> involved in the secular equations on the I-th level.
*> \endverbatim
*>
*> \param[out] GIVPTR
*> \verbatim
*> GIVPTR is INTEGER array,
*> dimension ( N ) if ICOMPQ = 1, and not referenced if
*> ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
*> the number of Givens rotations performed on the I-th
*> problem on the computation tree.
*> \endverbatim
*>
*> \param[out] GIVCOL
*> \verbatim
*> GIVCOL is INTEGER array,
*> dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
*> referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
*> GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
*> of Givens rotations performed on the I-th level on the
*> computation tree.
*> \endverbatim
*>
*> \param[in] LDGCOL
*> \verbatim
*> LDGCOL is INTEGER, LDGCOL = > N.
*> The leading dimension of arrays GIVCOL and PERM.
*> \endverbatim
*>
*> \param[out] PERM
*> \verbatim
*> PERM is INTEGER array,
*> dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced
*> if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
*> permutations done on the I-th level of the computation tree.
*> \endverbatim
*>
*> \param[out] GIVNUM
*> \verbatim
*> GIVNUM is DOUBLE PRECISION array,
*> dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not
*> referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
*> GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
*> values of Givens rotations performed on the I-th level on
*> the computation tree.
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*> C is DOUBLE PRECISION array,
*> dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
*> If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
*> C( I ) contains the C-value of a Givens rotation related to
*> the right null space of the I-th subproblem.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is DOUBLE PRECISION array, dimension ( N ) if
*> ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
*> and the I-th subproblem is not square, on exit, S( I )
*> contains the S-value of a Givens rotation related to
*> the right null space of the I-th subproblem.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension
*> (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array.
*> Dimension must be at least (7 * N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if INFO = 1, a singular value did not converge
*> \endverbatim
*>
*
* Authors
* =======
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup auxOTHERauxiliary
*
*
* Further Details
* ===============
*>\details \b Further \b Details
*> \verbatim
*>
*> Based on contributions by
*> Ming Gu and Huan Ren, Computer Science Division, University of
*> California at Berkeley, USA
*>
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
$ DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
$ PERM, GIVNUM, C, S, WORK, IWORK, INFO )
*
* -- LAPACK auxiliary routine (version 3.2.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
* ..
* .. Array Arguments ..
INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
$ K( * ), PERM( LDGCOL, * )
DOUBLE PRECISION C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
$ E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
$ S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
$ Z( LDU, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, I1, IC, IDXQ, IDXQI, IM1, INODE, ITEMP, IWK,
$ J, LF, LL, LVL, LVL2, M, NCC, ND, NDB1, NDIML,
$ NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, NRU,
$ NWORK1, NWORK2, SMLSZP, SQREI, VF, VFI, VL, VLI
DOUBLE PRECISION ALPHA, BETA
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DLASD6, DLASDQ, DLASDT, DLASET, XERBLA
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
*
IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
INFO = -1
ELSE IF( SMLSIZ.LT.3 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
INFO = -4
ELSE IF( LDU.LT.( N+SQRE ) ) THEN
INFO = -8
ELSE IF( LDGCOL.LT.N ) THEN
INFO = -17
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DLASDA', -INFO )
RETURN
END IF
*
M = N + SQRE
*
* If the input matrix is too small, call DLASDQ to find the SVD.
*
IF( N.LE.SMLSIZ ) THEN
IF( ICOMPQ.EQ.0 ) THEN
CALL DLASDQ( 'U', SQRE, N, 0, 0, 0, D, E, VT, LDU, U, LDU,
$ U, LDU, WORK, INFO )
ELSE
CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDU, U, LDU,
$ U, LDU, WORK, INFO )
END IF
RETURN
END IF
*
* Book-keeping and set up the computation tree.
*
INODE = 1
NDIML = INODE + N
NDIMR = NDIML + N
IDXQ = NDIMR + N
IWK = IDXQ + N
*
NCC = 0
NRU = 0
*
SMLSZP = SMLSIZ + 1
VF = 1
VL = VF + M
NWORK1 = VL + M
NWORK2 = NWORK1 + SMLSZP*SMLSZP
*
CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
$ IWORK( NDIMR ), SMLSIZ )
*
* for the nodes on bottom level of the tree, solve
* their subproblems by DLASDQ.
*
NDB1 = ( ND+1 ) / 2
DO 30 I = NDB1, ND
*
* IC : center row of each node
* NL : number of rows of left subproblem
* NR : number of rows of right subproblem
* NLF: starting row of the left subproblem
* NRF: starting row of the right subproblem
*
I1 = I - 1
IC = IWORK( INODE+I1 )
NL = IWORK( NDIML+I1 )
NLP1 = NL + 1
NR = IWORK( NDIMR+I1 )
NLF = IC - NL
NRF = IC + 1
IDXQI = IDXQ + NLF - 2
VFI = VF + NLF - 1
VLI = VL + NLF - 1
SQREI = 1
IF( ICOMPQ.EQ.0 ) THEN
CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, WORK( NWORK1 ),
$ SMLSZP )
CALL DLASDQ( 'U', SQREI, NL, NLP1, NRU, NCC, D( NLF ),
$ E( NLF ), WORK( NWORK1 ), SMLSZP,
$ WORK( NWORK2 ), NL, WORK( NWORK2 ), NL,
$ WORK( NWORK2 ), INFO )
ITEMP = NWORK1 + NL*SMLSZP
CALL DCOPY( NLP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
CALL DCOPY( NLP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
ELSE
CALL DLASET( 'A', NL, NL, ZERO, ONE, U( NLF, 1 ), LDU )
CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, VT( NLF, 1 ), LDU )
CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ),
$ E( NLF ), VT( NLF, 1 ), LDU, U( NLF, 1 ), LDU,
$ U( NLF, 1 ), LDU, WORK( NWORK1 ), INFO )
CALL DCOPY( NLP1, VT( NLF, 1 ), 1, WORK( VFI ), 1 )
CALL DCOPY( NLP1, VT( NLF, NLP1 ), 1, WORK( VLI ), 1 )
END IF
IF( INFO.NE.0 ) THEN
RETURN
END IF
DO 10 J = 1, NL
IWORK( IDXQI+J ) = J
10 CONTINUE
IF( ( I.EQ.ND ) .AND. ( SQRE.EQ.0 ) ) THEN
SQREI = 0
ELSE
SQREI = 1
END IF
IDXQI = IDXQI + NLP1
VFI = VFI + NLP1
VLI = VLI + NLP1
NRP1 = NR + SQREI
IF( ICOMPQ.EQ.0 ) THEN
CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, WORK( NWORK1 ),
$ SMLSZP )
CALL DLASDQ( 'U', SQREI, NR, NRP1, NRU, NCC, D( NRF ),
$ E( NRF ), WORK( NWORK1 ), SMLSZP,
$ WORK( NWORK2 ), NR, WORK( NWORK2 ), NR,
$ WORK( NWORK2 ), INFO )
ITEMP = NWORK1 + ( NRP1-1 )*SMLSZP
CALL DCOPY( NRP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
CALL DCOPY( NRP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
ELSE
CALL DLASET( 'A', NR, NR, ZERO, ONE, U( NRF, 1 ), LDU )
CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, VT( NRF, 1 ), LDU )
CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ),
$ E( NRF ), VT( NRF, 1 ), LDU, U( NRF, 1 ), LDU,
$ U( NRF, 1 ), LDU, WORK( NWORK1 ), INFO )
CALL DCOPY( NRP1, VT( NRF, 1 ), 1, WORK( VFI ), 1 )
CALL DCOPY( NRP1, VT( NRF, NRP1 ), 1, WORK( VLI ), 1 )
END IF
IF( INFO.NE.0 ) THEN
RETURN
END IF
DO 20 J = 1, NR
IWORK( IDXQI+J ) = J
20 CONTINUE
30 CONTINUE
*
* Now conquer each subproblem bottom-up.
*
J = 2**NLVL
DO 50 LVL = NLVL, 1, -1
LVL2 = LVL*2 - 1
*
* Find the first node LF and last node LL on
* the current level LVL.
*
IF( LVL.EQ.1 ) THEN
LF = 1
LL = 1
ELSE
LF = 2**( LVL-1 )
LL = 2*LF - 1
END IF
DO 40 I = LF, LL
IM1 = I - 1
IC = IWORK( INODE+IM1 )
NL = IWORK( NDIML+IM1 )
NR = IWORK( NDIMR+IM1 )
NLF = IC - NL
NRF = IC + 1
IF( I.EQ.LL ) THEN
SQREI = SQRE
ELSE
SQREI = 1
END IF
VFI = VF + NLF - 1
VLI = VL + NLF - 1
IDXQI = IDXQ + NLF - 1
ALPHA = D( IC )
BETA = E( IC )
IF( ICOMPQ.EQ.0 ) THEN
CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
$ WORK( VFI ), WORK( VLI ), ALPHA, BETA,
$ IWORK( IDXQI ), PERM, GIVPTR( 1 ), GIVCOL,
$ LDGCOL, GIVNUM, LDU, POLES, DIFL, DIFR, Z,
$ K( 1 ), C( 1 ), S( 1 ), WORK( NWORK1 ),
$ IWORK( IWK ), INFO )
ELSE
J = J - 1
CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
$ WORK( VFI ), WORK( VLI ), ALPHA, BETA,
$ IWORK( IDXQI ), PERM( NLF, LVL ),
$ GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
$ GIVNUM( NLF, LVL2 ), LDU,
$ POLES( NLF, LVL2 ), DIFL( NLF, LVL ),
$ DIFR( NLF, LVL2 ), Z( NLF, LVL ), K( J ),
$ C( J ), S( J ), WORK( NWORK1 ),
$ IWORK( IWK ), INFO )
END IF
IF( INFO.NE.0 ) THEN
RETURN
END IF
40 CONTINUE
50 CONTINUE
*
RETURN
*
* End of DLASDA
*
END
|