summaryrefslogtreecommitdiff
path: root/SRC/dlasd5.f
blob: b9177cb1dc31a63eea7b59997f52f3f58d4548f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
*> \brief \b DLASD5
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> Download DLASD5 + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd5.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd5.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd5.f"> 
*> [TXT]</a> 
*
*  Definition
*  ==========
*
*       SUBROUTINE DLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
* 
*       .. Scalar Arguments ..
*       INTEGER            I
*       DOUBLE PRECISION   DSIGMA, RHO
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
*       ..
*  
*  Purpose
*  =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> This subroutine computes the square root of the I-th eigenvalue
*> of a positive symmetric rank-one modification of a 2-by-2 diagonal
*> matrix
*>
*>            diag( D ) * diag( D ) +  RHO * Z * transpose(Z) .
*>
*> The diagonal entries in the array D are assumed to satisfy
*>
*>            0 <= D(i) < D(j)  for  i < j .
*>
*> We also assume RHO > 0 and that the Euclidean norm of the vector
*> Z is one.
*>
*>\endverbatim
*
*  Arguments
*  =========
*
*> \param[in] I
*> \verbatim
*>          I is INTEGER
*>         The index of the eigenvalue to be computed.  I = 1 or I = 2.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension ( 2 )
*>         The original eigenvalues.  We assume 0 <= D(1) < D(2).
*> \endverbatim
*>
*> \param[in] Z
*> \verbatim
*>          Z is DOUBLE PRECISION array, dimension ( 2 )
*>         The components of the updating vector.
*> \endverbatim
*>
*> \param[out] DELTA
*> \verbatim
*>          DELTA is DOUBLE PRECISION array, dimension ( 2 )
*>         Contains (D(j) - sigma_I) in its  j-th component.
*>         The vector DELTA contains the information necessary
*>         to construct the eigenvectors.
*> \endverbatim
*>
*> \param[in] RHO
*> \verbatim
*>          RHO is DOUBLE PRECISION
*>         The scalar in the symmetric updating formula.
*> \endverbatim
*>
*> \param[out] DSIGMA
*> \verbatim
*>          DSIGMA is DOUBLE PRECISION
*>         The computed sigma_I, the I-th updated eigenvalue.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension ( 2 )
*>         WORK contains (D(j) + sigma_I) in its  j-th component.
*> \endverbatim
*>
*
*  Authors
*  =======
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup auxOTHERauxiliary
*
*
*  Further Details
*  ===============
*>\details \b Further \b Details
*> \verbatim
*>
*>  Based on contributions by
*>     Ren-Cang Li, Computer Science Division, University of California
*>     at Berkeley, USA
*>
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE DLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            I
      DOUBLE PRECISION   DSIGMA, RHO
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
     $                   THREE = 3.0D+0, FOUR = 4.0D+0 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION   B, C, DEL, DELSQ, TAU, W
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SQRT
*     ..
*     .. Executable Statements ..
*
      DEL = D( 2 ) - D( 1 )
      DELSQ = DEL*( D( 2 )+D( 1 ) )
      IF( I.EQ.1 ) THEN
         W = ONE + FOUR*RHO*( Z( 2 )*Z( 2 ) / ( D( 1 )+THREE*D( 2 ) )-
     $       Z( 1 )*Z( 1 ) / ( THREE*D( 1 )+D( 2 ) ) ) / DEL
         IF( W.GT.ZERO ) THEN
            B = DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
            C = RHO*Z( 1 )*Z( 1 )*DELSQ
*
*           B > ZERO, always
*
*           The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 )
*
            TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
*
*           The following TAU is DSIGMA - D( 1 )
*
            TAU = TAU / ( D( 1 )+SQRT( D( 1 )*D( 1 )+TAU ) )
            DSIGMA = D( 1 ) + TAU
            DELTA( 1 ) = -TAU
            DELTA( 2 ) = DEL - TAU
            WORK( 1 ) = TWO*D( 1 ) + TAU
            WORK( 2 ) = ( D( 1 )+TAU ) + D( 2 )
*           DELTA( 1 ) = -Z( 1 ) / TAU
*           DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
         ELSE
            B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
            C = RHO*Z( 2 )*Z( 2 )*DELSQ
*
*           The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
*
            IF( B.GT.ZERO ) THEN
               TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
            ELSE
               TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
            END IF
*
*           The following TAU is DSIGMA - D( 2 )
*
            TAU = TAU / ( D( 2 )+SQRT( ABS( D( 2 )*D( 2 )+TAU ) ) )
            DSIGMA = D( 2 ) + TAU
            DELTA( 1 ) = -( DEL+TAU )
            DELTA( 2 ) = -TAU
            WORK( 1 ) = D( 1 ) + TAU + D( 2 )
            WORK( 2 ) = TWO*D( 2 ) + TAU
*           DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
*           DELTA( 2 ) = -Z( 2 ) / TAU
         END IF
*        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
*        DELTA( 1 ) = DELTA( 1 ) / TEMP
*        DELTA( 2 ) = DELTA( 2 ) / TEMP
      ELSE
*
*        Now I=2
*
         B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
         C = RHO*Z( 2 )*Z( 2 )*DELSQ
*
*        The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
*
         IF( B.GT.ZERO ) THEN
            TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
         ELSE
            TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
         END IF
*
*        The following TAU is DSIGMA - D( 2 )
*
         TAU = TAU / ( D( 2 )+SQRT( D( 2 )*D( 2 )+TAU ) )
         DSIGMA = D( 2 ) + TAU
         DELTA( 1 ) = -( DEL+TAU )
         DELTA( 2 ) = -TAU
         WORK( 1 ) = D( 1 ) + TAU + D( 2 )
         WORK( 2 ) = TWO*D( 2 ) + TAU
*        DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
*        DELTA( 2 ) = -Z( 2 ) / TAU
*        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
*        DELTA( 1 ) = DELTA( 1 ) / TEMP
*        DELTA( 2 ) = DELTA( 2 ) / TEMP
      END IF
      RETURN
*
*     End of DLASD5
*
      END