summaryrefslogtreecommitdiff
path: root/SRC/dlaruv.f
blob: 70755a255adf4a1668c7be9e8834e063146c53f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
*> \brief \b DLARUV
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download DLARUV + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaruv.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaruv.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaruv.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE DLARUV( ISEED, N, X )
* 
*       .. Scalar Arguments ..
*       INTEGER            N
*       ..
*       .. Array Arguments ..
*       INTEGER            ISEED( 4 )
*       DOUBLE PRECISION   X( N )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DLARUV returns a vector of n random real numbers from a uniform (0,1)
*> distribution (n <= 128).
*>
*> This is an auxiliary routine called by DLARNV and ZLARNV.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          On entry, the seed of the random number generator; the array
*>          elements must be between 0 and 4095, and ISEED(4) must be
*>          odd.
*>          On exit, the seed is updated.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of random numbers to be generated. N <= 128.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*>          X is DOUBLE PRECISION array, dimension (N)
*>          The generated random numbers.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup auxOTHERauxiliary
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  This routine uses a multiplicative congruential method with modulus
*>  2**48 and multiplier 33952834046453 (see G.S.Fishman,
*>  'Multiplicative congruential random number generators with modulus
*>  2**b: an exhaustive analysis for b = 32 and a partial analysis for
*>  b = 48', Math. Comp. 189, pp 331-344, 1990).
*>
*>  48-bit integers are stored in 4 integer array elements with 12 bits
*>  per element. Hence the routine is portable across machines with
*>  integers of 32 bits or more.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE DLARUV( ISEED, N, X )
*
*  -- LAPACK auxiliary routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            N
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
      DOUBLE PRECISION   X( N )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D0 )
      INTEGER            LV, IPW2
      DOUBLE PRECISION   R
      PARAMETER          ( LV = 128, IPW2 = 4096, R = ONE / IPW2 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, I1, I2, I3, I4, IT1, IT2, IT3, IT4, J
*     ..
*     .. Local Arrays ..
      INTEGER            MM( LV, 4 )
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MIN, MOD
*     ..
*     .. Data statements ..
      DATA               ( MM( 1, J ), J = 1, 4 ) / 494, 322, 2508,
     $                   2549 /
      DATA               ( MM( 2, J ), J = 1, 4 ) / 2637, 789, 3754,
     $                   1145 /
      DATA               ( MM( 3, J ), J = 1, 4 ) / 255, 1440, 1766,
     $                   2253 /
      DATA               ( MM( 4, J ), J = 1, 4 ) / 2008, 752, 3572,
     $                   305 /
      DATA               ( MM( 5, J ), J = 1, 4 ) / 1253, 2859, 2893,
     $                   3301 /
      DATA               ( MM( 6, J ), J = 1, 4 ) / 3344, 123, 307,
     $                   1065 /
      DATA               ( MM( 7, J ), J = 1, 4 ) / 4084, 1848, 1297,
     $                   3133 /
      DATA               ( MM( 8, J ), J = 1, 4 ) / 1739, 643, 3966,
     $                   2913 /
      DATA               ( MM( 9, J ), J = 1, 4 ) / 3143, 2405, 758,
     $                   3285 /
      DATA               ( MM( 10, J ), J = 1, 4 ) / 3468, 2638, 2598,
     $                   1241 /
      DATA               ( MM( 11, J ), J = 1, 4 ) / 688, 2344, 3406,
     $                   1197 /
      DATA               ( MM( 12, J ), J = 1, 4 ) / 1657, 46, 2922,
     $                   3729 /
      DATA               ( MM( 13, J ), J = 1, 4 ) / 1238, 3814, 1038,
     $                   2501 /
      DATA               ( MM( 14, J ), J = 1, 4 ) / 3166, 913, 2934,
     $                   1673 /
      DATA               ( MM( 15, J ), J = 1, 4 ) / 1292, 3649, 2091,
     $                   541 /
      DATA               ( MM( 16, J ), J = 1, 4 ) / 3422, 339, 2451,
     $                   2753 /
      DATA               ( MM( 17, J ), J = 1, 4 ) / 1270, 3808, 1580,
     $                   949 /
      DATA               ( MM( 18, J ), J = 1, 4 ) / 2016, 822, 1958,
     $                   2361 /
      DATA               ( MM( 19, J ), J = 1, 4 ) / 154, 2832, 2055,
     $                   1165 /
      DATA               ( MM( 20, J ), J = 1, 4 ) / 2862, 3078, 1507,
     $                   4081 /
      DATA               ( MM( 21, J ), J = 1, 4 ) / 697, 3633, 1078,
     $                   2725 /
      DATA               ( MM( 22, J ), J = 1, 4 ) / 1706, 2970, 3273,
     $                   3305 /
      DATA               ( MM( 23, J ), J = 1, 4 ) / 491, 637, 17,
     $                   3069 /
      DATA               ( MM( 24, J ), J = 1, 4 ) / 931, 2249, 854,
     $                   3617 /
      DATA               ( MM( 25, J ), J = 1, 4 ) / 1444, 2081, 2916,
     $                   3733 /
      DATA               ( MM( 26, J ), J = 1, 4 ) / 444, 4019, 3971,
     $                   409 /
      DATA               ( MM( 27, J ), J = 1, 4 ) / 3577, 1478, 2889,
     $                   2157 /
      DATA               ( MM( 28, J ), J = 1, 4 ) / 3944, 242, 3831,
     $                   1361 /
      DATA               ( MM( 29, J ), J = 1, 4 ) / 2184, 481, 2621,
     $                   3973 /
      DATA               ( MM( 30, J ), J = 1, 4 ) / 1661, 2075, 1541,
     $                   1865 /
      DATA               ( MM( 31, J ), J = 1, 4 ) / 3482, 4058, 893,
     $                   2525 /
      DATA               ( MM( 32, J ), J = 1, 4 ) / 657, 622, 736,
     $                   1409 /
      DATA               ( MM( 33, J ), J = 1, 4 ) / 3023, 3376, 3992,
     $                   3445 /
      DATA               ( MM( 34, J ), J = 1, 4 ) / 3618, 812, 787,
     $                   3577 /
      DATA               ( MM( 35, J ), J = 1, 4 ) / 1267, 234, 2125,
     $                   77 /
      DATA               ( MM( 36, J ), J = 1, 4 ) / 1828, 641, 2364,
     $                   3761 /
      DATA               ( MM( 37, J ), J = 1, 4 ) / 164, 4005, 2460,
     $                   2149 /
      DATA               ( MM( 38, J ), J = 1, 4 ) / 3798, 1122, 257,
     $                   1449 /
      DATA               ( MM( 39, J ), J = 1, 4 ) / 3087, 3135, 1574,
     $                   3005 /
      DATA               ( MM( 40, J ), J = 1, 4 ) / 2400, 2640, 3912,
     $                   225 /
      DATA               ( MM( 41, J ), J = 1, 4 ) / 2870, 2302, 1216,
     $                   85 /
      DATA               ( MM( 42, J ), J = 1, 4 ) / 3876, 40, 3248,
     $                   3673 /
      DATA               ( MM( 43, J ), J = 1, 4 ) / 1905, 1832, 3401,
     $                   3117 /
      DATA               ( MM( 44, J ), J = 1, 4 ) / 1593, 2247, 2124,
     $                   3089 /
      DATA               ( MM( 45, J ), J = 1, 4 ) / 1797, 2034, 2762,
     $                   1349 /
      DATA               ( MM( 46, J ), J = 1, 4 ) / 1234, 2637, 149,
     $                   2057 /
      DATA               ( MM( 47, J ), J = 1, 4 ) / 3460, 1287, 2245,
     $                   413 /
      DATA               ( MM( 48, J ), J = 1, 4 ) / 328, 1691, 166,
     $                   65 /
      DATA               ( MM( 49, J ), J = 1, 4 ) / 2861, 496, 466,
     $                   1845 /
      DATA               ( MM( 50, J ), J = 1, 4 ) / 1950, 1597, 4018,
     $                   697 /
      DATA               ( MM( 51, J ), J = 1, 4 ) / 617, 2394, 1399,
     $                   3085 /
      DATA               ( MM( 52, J ), J = 1, 4 ) / 2070, 2584, 190,
     $                   3441 /
      DATA               ( MM( 53, J ), J = 1, 4 ) / 3331, 1843, 2879,
     $                   1573 /
      DATA               ( MM( 54, J ), J = 1, 4 ) / 769, 336, 153,
     $                   3689 /
      DATA               ( MM( 55, J ), J = 1, 4 ) / 1558, 1472, 2320,
     $                   2941 /
      DATA               ( MM( 56, J ), J = 1, 4 ) / 2412, 2407, 18,
     $                   929 /
      DATA               ( MM( 57, J ), J = 1, 4 ) / 2800, 433, 712,
     $                   533 /
      DATA               ( MM( 58, J ), J = 1, 4 ) / 189, 2096, 2159,
     $                   2841 /
      DATA               ( MM( 59, J ), J = 1, 4 ) / 287, 1761, 2318,
     $                   4077 /
      DATA               ( MM( 60, J ), J = 1, 4 ) / 2045, 2810, 2091,
     $                   721 /
      DATA               ( MM( 61, J ), J = 1, 4 ) / 1227, 566, 3443,
     $                   2821 /
      DATA               ( MM( 62, J ), J = 1, 4 ) / 2838, 442, 1510,
     $                   2249 /
      DATA               ( MM( 63, J ), J = 1, 4 ) / 209, 41, 449,
     $                   2397 /
      DATA               ( MM( 64, J ), J = 1, 4 ) / 2770, 1238, 1956,
     $                   2817 /
      DATA               ( MM( 65, J ), J = 1, 4 ) / 3654, 1086, 2201,
     $                   245 /
      DATA               ( MM( 66, J ), J = 1, 4 ) / 3993, 603, 3137,
     $                   1913 /
      DATA               ( MM( 67, J ), J = 1, 4 ) / 192, 840, 3399,
     $                   1997 /
      DATA               ( MM( 68, J ), J = 1, 4 ) / 2253, 3168, 1321,
     $                   3121 /
      DATA               ( MM( 69, J ), J = 1, 4 ) / 3491, 1499, 2271,
     $                   997 /
      DATA               ( MM( 70, J ), J = 1, 4 ) / 2889, 1084, 3667,
     $                   1833 /
      DATA               ( MM( 71, J ), J = 1, 4 ) / 2857, 3438, 2703,
     $                   2877 /
      DATA               ( MM( 72, J ), J = 1, 4 ) / 2094, 2408, 629,
     $                   1633 /
      DATA               ( MM( 73, J ), J = 1, 4 ) / 1818, 1589, 2365,
     $                   981 /
      DATA               ( MM( 74, J ), J = 1, 4 ) / 688, 2391, 2431,
     $                   2009 /
      DATA               ( MM( 75, J ), J = 1, 4 ) / 1407, 288, 1113,
     $                   941 /
      DATA               ( MM( 76, J ), J = 1, 4 ) / 634, 26, 3922,
     $                   2449 /
      DATA               ( MM( 77, J ), J = 1, 4 ) / 3231, 512, 2554,
     $                   197 /
      DATA               ( MM( 78, J ), J = 1, 4 ) / 815, 1456, 184,
     $                   2441 /
      DATA               ( MM( 79, J ), J = 1, 4 ) / 3524, 171, 2099,
     $                   285 /
      DATA               ( MM( 80, J ), J = 1, 4 ) / 1914, 1677, 3228,
     $                   1473 /
      DATA               ( MM( 81, J ), J = 1, 4 ) / 516, 2657, 4012,
     $                   2741 /
      DATA               ( MM( 82, J ), J = 1, 4 ) / 164, 2270, 1921,
     $                   3129 /
      DATA               ( MM( 83, J ), J = 1, 4 ) / 303, 2587, 3452,
     $                   909 /
      DATA               ( MM( 84, J ), J = 1, 4 ) / 2144, 2961, 3901,
     $                   2801 /
      DATA               ( MM( 85, J ), J = 1, 4 ) / 3480, 1970, 572,
     $                   421 /
      DATA               ( MM( 86, J ), J = 1, 4 ) / 119, 1817, 3309,
     $                   4073 /
      DATA               ( MM( 87, J ), J = 1, 4 ) / 3357, 676, 3171,
     $                   2813 /
      DATA               ( MM( 88, J ), J = 1, 4 ) / 837, 1410, 817,
     $                   2337 /
      DATA               ( MM( 89, J ), J = 1, 4 ) / 2826, 3723, 3039,
     $                   1429 /
      DATA               ( MM( 90, J ), J = 1, 4 ) / 2332, 2803, 1696,
     $                   1177 /
      DATA               ( MM( 91, J ), J = 1, 4 ) / 2089, 3185, 1256,
     $                   1901 /
      DATA               ( MM( 92, J ), J = 1, 4 ) / 3780, 184, 3715,
     $                   81 /
      DATA               ( MM( 93, J ), J = 1, 4 ) / 1700, 663, 2077,
     $                   1669 /
      DATA               ( MM( 94, J ), J = 1, 4 ) / 3712, 499, 3019,
     $                   2633 /
      DATA               ( MM( 95, J ), J = 1, 4 ) / 150, 3784, 1497,
     $                   2269 /
      DATA               ( MM( 96, J ), J = 1, 4 ) / 2000, 1631, 1101,
     $                   129 /
      DATA               ( MM( 97, J ), J = 1, 4 ) / 3375, 1925, 717,
     $                   1141 /
      DATA               ( MM( 98, J ), J = 1, 4 ) / 1621, 3912, 51,
     $                   249 /
      DATA               ( MM( 99, J ), J = 1, 4 ) / 3090, 1398, 981,
     $                   3917 /
      DATA               ( MM( 100, J ), J = 1, 4 ) / 3765, 1349, 1978,
     $                   2481 /
      DATA               ( MM( 101, J ), J = 1, 4 ) / 1149, 1441, 1813,
     $                   3941 /
      DATA               ( MM( 102, J ), J = 1, 4 ) / 3146, 2224, 3881,
     $                   2217 /
      DATA               ( MM( 103, J ), J = 1, 4 ) / 33, 2411, 76,
     $                   2749 /
      DATA               ( MM( 104, J ), J = 1, 4 ) / 3082, 1907, 3846,
     $                   3041 /
      DATA               ( MM( 105, J ), J = 1, 4 ) / 2741, 3192, 3694,
     $                   1877 /
      DATA               ( MM( 106, J ), J = 1, 4 ) / 359, 2786, 1682,
     $                   345 /
      DATA               ( MM( 107, J ), J = 1, 4 ) / 3316, 382, 124,
     $                   2861 /
      DATA               ( MM( 108, J ), J = 1, 4 ) / 1749, 37, 1660,
     $                   1809 /
      DATA               ( MM( 109, J ), J = 1, 4 ) / 185, 759, 3997,
     $                   3141 /
      DATA               ( MM( 110, J ), J = 1, 4 ) / 2784, 2948, 479,
     $                   2825 /
      DATA               ( MM( 111, J ), J = 1, 4 ) / 2202, 1862, 1141,
     $                   157 /
      DATA               ( MM( 112, J ), J = 1, 4 ) / 2199, 3802, 886,
     $                   2881 /
      DATA               ( MM( 113, J ), J = 1, 4 ) / 1364, 2423, 3514,
     $                   3637 /
      DATA               ( MM( 114, J ), J = 1, 4 ) / 1244, 2051, 1301,
     $                   1465 /
      DATA               ( MM( 115, J ), J = 1, 4 ) / 2020, 2295, 3604,
     $                   2829 /
      DATA               ( MM( 116, J ), J = 1, 4 ) / 3160, 1332, 1888,
     $                   2161 /
      DATA               ( MM( 117, J ), J = 1, 4 ) / 2785, 1832, 1836,
     $                   3365 /
      DATA               ( MM( 118, J ), J = 1, 4 ) / 2772, 2405, 1990,
     $                   361 /
      DATA               ( MM( 119, J ), J = 1, 4 ) / 1217, 3638, 2058,
     $                   2685 /
      DATA               ( MM( 120, J ), J = 1, 4 ) / 1822, 3661, 692,
     $                   3745 /
      DATA               ( MM( 121, J ), J = 1, 4 ) / 1245, 327, 1194,
     $                   2325 /
      DATA               ( MM( 122, J ), J = 1, 4 ) / 2252, 3660, 20,
     $                   3609 /
      DATA               ( MM( 123, J ), J = 1, 4 ) / 3904, 716, 3285,
     $                   3821 /
      DATA               ( MM( 124, J ), J = 1, 4 ) / 2774, 1842, 2046,
     $                   3537 /
      DATA               ( MM( 125, J ), J = 1, 4 ) / 997, 3987, 2107,
     $                   517 /
      DATA               ( MM( 126, J ), J = 1, 4 ) / 2573, 1368, 3508,
     $                   3017 /
      DATA               ( MM( 127, J ), J = 1, 4 ) / 1148, 1848, 3525,
     $                   2141 /
      DATA               ( MM( 128, J ), J = 1, 4 ) / 545, 2366, 3801,
     $                   1537 /
*     ..
*     .. Executable Statements ..
*
      I1 = ISEED( 1 )
      I2 = ISEED( 2 )
      I3 = ISEED( 3 )
      I4 = ISEED( 4 )
*
      DO 10 I = 1, MIN( N, LV )
*	  
  20     CONTINUE
*
*        Multiply the seed by i-th power of the multiplier modulo 2**48
*
         IT4 = I4*MM( I, 4 )
         IT3 = IT4 / IPW2
         IT4 = IT4 - IPW2*IT3
         IT3 = IT3 + I3*MM( I, 4 ) + I4*MM( I, 3 )
         IT2 = IT3 / IPW2
         IT3 = IT3 - IPW2*IT2
         IT2 = IT2 + I2*MM( I, 4 ) + I3*MM( I, 3 ) + I4*MM( I, 2 )
         IT1 = IT2 / IPW2
         IT2 = IT2 - IPW2*IT1
         IT1 = IT1 + I1*MM( I, 4 ) + I2*MM( I, 3 ) + I3*MM( I, 2 ) +
     $         I4*MM( I, 1 )
         IT1 = MOD( IT1, IPW2 )
*
*        Convert 48-bit integer to a real number in the interval (0,1)
*
         X( I ) = R*( DBLE( IT1 )+R*( DBLE( IT2 )+R*( DBLE( IT3 )+R*
     $            DBLE( IT4 ) ) ) )
*
         IF (X( I ).EQ.1.0D0) THEN
*           If a real number has n bits of precision, and the first
*           n bits of the 48-bit integer above happen to be all 1 (which
*           will occur about once every 2**n calls), then X( I ) will
*           be rounded to exactly 1.0. 
*           Since X( I ) is not supposed to return exactly 0.0 or 1.0,
*           the statistically correct thing to do in this situation is
*           simply to iterate again.
*           N.B. the case X( I ) = 0.0 should not be possible.	
            I1 = I1 + 2
            I2 = I2 + 2
            I3 = I3 + 2
            I4 = I4 + 2
            GOTO 20
         END IF
*
   10 CONTINUE
*
*     Return final value of seed
*
      ISEED( 1 ) = IT1
      ISEED( 2 ) = IT2
      ISEED( 3 ) = IT3
      ISEED( 4 ) = IT4
      RETURN
*
*     End of DLARUV
*
      END