1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
|
*> \brief \b DLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenvalues of L D LT.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLARRV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrv.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN,
* ISPLIT, M, DOL, DOU, MINRGP,
* RTOL1, RTOL2, W, WERR, WGAP,
* IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
* WORK, IWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER DOL, DOU, INFO, LDZ, M, N
* DOUBLE PRECISION MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
* ..
* .. Array Arguments ..
* INTEGER IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
* $ ISUPPZ( * ), IWORK( * )
* DOUBLE PRECISION D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
* $ WGAP( * ), WORK( * )
* DOUBLE PRECISION Z( LDZ, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLARRV computes the eigenvectors of the tridiagonal matrix
*> T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T.
*> The input eigenvalues should have been computed by DLARRE.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix. N >= 0.
*> \endverbatim
*>
*> \param[in] VL
*> \verbatim
*> VL is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in] VU
*> \verbatim
*> VU is DOUBLE PRECISION
*> Lower and upper bounds of the interval that contains the desired
*> eigenvalues. VL < VU. Needed to compute gaps on the left or right
*> end of the extremal eigenvalues in the desired RANGE.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> On entry, the N diagonal elements of the diagonal matrix D.
*> On exit, D may be overwritten.
*> \endverbatim
*>
*> \param[in,out] L
*> \verbatim
*> L is DOUBLE PRECISION array, dimension (N)
*> On entry, the (N-1) subdiagonal elements of the unit
*> bidiagonal matrix L are in elements 1 to N-1 of L
*> (if the matrix is not splitted.) At the end of each block
*> is stored the corresponding shift as given by DLARRE.
*> On exit, L is overwritten.
*> \endverbatim
*>
*> \param[in] PIVMIN
*> \verbatim
*> PIVMIN is DOUBLE PRECISION
*> The minimum pivot allowed in the Sturm sequence.
*> \endverbatim
*>
*> \param[in] ISPLIT
*> \verbatim
*> ISPLIT is INTEGER array, dimension (N)
*> The splitting points, at which T breaks up into blocks.
*> The first block consists of rows/columns 1 to
*> ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
*> through ISPLIT( 2 ), etc.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The total number of input eigenvalues. 0 <= M <= N.
*> \endverbatim
*>
*> \param[in] DOL
*> \verbatim
*> DOL is INTEGER
*> \endverbatim
*>
*> \param[in] DOU
*> \verbatim
*> DOU is INTEGER
*> If the user wants to compute only selected eigenvectors from all
*> the eigenvalues supplied, he can specify an index range DOL:DOU.
*> Or else the setting DOL=1, DOU=M should be applied.
*> Note that DOL and DOU refer to the order in which the eigenvalues
*> are stored in W.
*> If the user wants to compute only selected eigenpairs, then
*> the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
*> computed eigenvectors. All other columns of Z are set to zero.
*> \endverbatim
*>
*> \param[in] MINRGP
*> \verbatim
*> MINRGP is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in] RTOL1
*> \verbatim
*> RTOL1 is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in] RTOL2
*> \verbatim
*> RTOL2 is DOUBLE PRECISION
*> Parameters for bisection.
*> An interval [LEFT,RIGHT] has converged if
*> RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
*> \endverbatim
*>
*> \param[in,out] W
*> \verbatim
*> W is DOUBLE PRECISION array, dimension (N)
*> The first M elements of W contain the APPROXIMATE eigenvalues for
*> which eigenvectors are to be computed. The eigenvalues
*> should be grouped by split-off block and ordered from
*> smallest to largest within the block ( The output array
*> W from DLARRE is expected here ). Furthermore, they are with
*> respect to the shift of the corresponding root representation
*> for their block. On exit, W holds the eigenvalues of the
*> UNshifted matrix.
*> \endverbatim
*>
*> \param[in,out] WERR
*> \verbatim
*> WERR is DOUBLE PRECISION array, dimension (N)
*> The first M elements contain the semiwidth of the uncertainty
*> interval of the corresponding eigenvalue in W
*> \endverbatim
*>
*> \param[in,out] WGAP
*> \verbatim
*> WGAP is DOUBLE PRECISION array, dimension (N)
*> The separation from the right neighbor eigenvalue in W.
*> \endverbatim
*>
*> \param[in] IBLOCK
*> \verbatim
*> IBLOCK is INTEGER array, dimension (N)
*> The indices of the blocks (submatrices) associated with the
*> corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
*> W(i) belongs to the first block from the top, =2 if W(i)
*> belongs to the second block, etc.
*> \endverbatim
*>
*> \param[in] INDEXW
*> \verbatim
*> INDEXW is INTEGER array, dimension (N)
*> The indices of the eigenvalues within each block (submatrix);
*> for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
*> i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
*> \endverbatim
*>
*> \param[in] GERS
*> \verbatim
*> GERS is DOUBLE PRECISION array, dimension (2*N)
*> The N Gerschgorin intervals (the i-th Gerschgorin interval
*> is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
*> be computed from the original UNshifted matrix.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
*> If INFO = 0, the first M columns of Z contain the
*> orthonormal eigenvectors of the matrix T
*> corresponding to the input eigenvalues, with the i-th
*> column of Z holding the eigenvector associated with W(i).
*> Note: the user must ensure that at least max(1,M) columns are
*> supplied in the array Z.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of the array Z. LDZ >= 1, and if
*> JOBZ = 'V', LDZ >= max(1,N).
*> \endverbatim
*>
*> \param[out] ISUPPZ
*> \verbatim
*> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
*> The support of the eigenvectors in Z, i.e., the indices
*> indicating the nonzero elements in Z. The I-th eigenvector
*> is nonzero only in elements ISUPPZ( 2*I-1 ) through
*> ISUPPZ( 2*I ).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (12*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (7*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*>
*> > 0: A problem occured in DLARRV.
*> < 0: One of the called subroutines signaled an internal problem.
*> Needs inspection of the corresponding parameter IINFO
*> for further information.
*>
*> =-1: Problem in DLARRB when refining a child's eigenvalues.
*> =-2: Problem in DLARRF when computing the RRR of a child.
*> When a child is inside a tight cluster, it can be difficult
*> to find an RRR. A partial remedy from the user's point of
*> view is to make the parameter MINRGP smaller and recompile.
*> However, as the orthogonality of the computed vectors is
*> proportional to 1/MINRGP, the user should be aware that
*> he might be trading in precision when he decreases MINRGP.
*> =-3: Problem in DLARRB when refining a single eigenvalue
*> after the Rayleigh correction was rejected.
*> = 5: The Rayleigh Quotient Iteration failed to converge to
*> full accuracy in MAXITR steps.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2015
*
*> \ingroup doubleOTHERauxiliary
*
*> \par Contributors:
* ==================
*>
*> Beresford Parlett, University of California, Berkeley, USA \n
*> Jim Demmel, University of California, Berkeley, USA \n
*> Inderjit Dhillon, University of Texas, Austin, USA \n
*> Osni Marques, LBNL/NERSC, USA \n
*> Christof Voemel, University of California, Berkeley, USA
*
* =====================================================================
SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN,
$ ISPLIT, M, DOL, DOU, MINRGP,
$ RTOL1, RTOL2, W, WERR, WGAP,
$ IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
$ WORK, IWORK, INFO )
*
* -- LAPACK auxiliary routine (version 3.6.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2015
*
* .. Scalar Arguments ..
INTEGER DOL, DOU, INFO, LDZ, M, N
DOUBLE PRECISION MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
* ..
* .. Array Arguments ..
INTEGER IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
$ ISUPPZ( * ), IWORK( * )
DOUBLE PRECISION D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
$ WGAP( * ), WORK( * )
DOUBLE PRECISION Z( LDZ, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER MAXITR
PARAMETER ( MAXITR = 10 )
DOUBLE PRECISION ZERO, ONE, TWO, THREE, FOUR, HALF
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0,
$ TWO = 2.0D0, THREE = 3.0D0,
$ FOUR = 4.0D0, HALF = 0.5D0)
* ..
* .. Local Scalars ..
LOGICAL ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ
INTEGER DONE, I, IBEGIN, IDONE, IEND, II, IINDC1,
$ IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG,
$ INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER,
$ ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS,
$ NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST,
$ NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST,
$ OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX,
$ WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU,
$ ZUSEDW
DOUBLE PRECISION BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU,
$ LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID,
$ RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF,
$ SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DLAR1V, DLARRB, DLARRF, DLASET,
$ DSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN
* ..
* .. Executable Statements ..
* ..
INFO = 0
* The first N entries of WORK are reserved for the eigenvalues
INDLD = N+1
INDLLD= 2*N+1
INDWRK= 3*N+1
MINWSIZE = 12 * N
DO 5 I= 1,MINWSIZE
WORK( I ) = ZERO
5 CONTINUE
* IWORK(IINDR+1:IINDR+N) hold the twist indices R for the
* factorization used to compute the FP vector
IINDR = 0
* IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
* layer and the one above.
IINDC1 = N
IINDC2 = 2*N
IINDWK = 3*N + 1
MINIWSIZE = 7 * N
DO 10 I= 1,MINIWSIZE
IWORK( I ) = 0
10 CONTINUE
ZUSEDL = 1
IF(DOL.GT.1) THEN
* Set lower bound for use of Z
ZUSEDL = DOL-1
ENDIF
ZUSEDU = M
IF(DOU.LT.M) THEN
* Set lower bound for use of Z
ZUSEDU = DOU+1
ENDIF
* The width of the part of Z that is used
ZUSEDW = ZUSEDU - ZUSEDL + 1
CALL DLASET( 'Full', N, ZUSEDW, ZERO, ZERO,
$ Z(1,ZUSEDL), LDZ )
EPS = DLAMCH( 'Precision' )
RQTOL = TWO * EPS
*
* Set expert flags for standard code.
TRYRQC = .TRUE.
IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
ELSE
* Only selected eigenpairs are computed. Since the other evalues
* are not refined by RQ iteration, bisection has to compute to full
* accuracy.
RTOL1 = FOUR * EPS
RTOL2 = FOUR * EPS
ENDIF
* The entries WBEGIN:WEND in W, WERR, WGAP correspond to the
* desired eigenvalues. The support of the nonzero eigenvector
* entries is contained in the interval IBEGIN:IEND.
* Remark that if k eigenpairs are desired, then the eigenvectors
* are stored in k contiguous columns of Z.
* DONE is the number of eigenvectors already computed
DONE = 0
IBEGIN = 1
WBEGIN = 1
DO 170 JBLK = 1, IBLOCK( M )
IEND = ISPLIT( JBLK )
SIGMA = L( IEND )
* Find the eigenvectors of the submatrix indexed IBEGIN
* through IEND.
WEND = WBEGIN - 1
15 CONTINUE
IF( WEND.LT.M ) THEN
IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
WEND = WEND + 1
GO TO 15
END IF
END IF
IF( WEND.LT.WBEGIN ) THEN
IBEGIN = IEND + 1
GO TO 170
ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
IBEGIN = IEND + 1
WBEGIN = WEND + 1
GO TO 170
END IF
* Find local spectral diameter of the block
GL = GERS( 2*IBEGIN-1 )
GU = GERS( 2*IBEGIN )
DO 20 I = IBEGIN+1 , IEND
GL = MIN( GERS( 2*I-1 ), GL )
GU = MAX( GERS( 2*I ), GU )
20 CONTINUE
SPDIAM = GU - GL
* OLDIEN is the last index of the previous block
OLDIEN = IBEGIN - 1
* Calculate the size of the current block
IN = IEND - IBEGIN + 1
* The number of eigenvalues in the current block
IM = WEND - WBEGIN + 1
* This is for a 1x1 block
IF( IBEGIN.EQ.IEND ) THEN
DONE = DONE+1
Z( IBEGIN, WBEGIN ) = ONE
ISUPPZ( 2*WBEGIN-1 ) = IBEGIN
ISUPPZ( 2*WBEGIN ) = IBEGIN
W( WBEGIN ) = W( WBEGIN ) + SIGMA
WORK( WBEGIN ) = W( WBEGIN )
IBEGIN = IEND + 1
WBEGIN = WBEGIN + 1
GO TO 170
END IF
* The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND)
* Note that these can be approximations, in this case, the corresp.
* entries of WERR give the size of the uncertainty interval.
* The eigenvalue approximations will be refined when necessary as
* high relative accuracy is required for the computation of the
* corresponding eigenvectors.
CALL DCOPY( IM, W( WBEGIN ), 1,
$ WORK( WBEGIN ), 1 )
* We store in W the eigenvalue approximations w.r.t. the original
* matrix T.
DO 30 I=1,IM
W(WBEGIN+I-1) = W(WBEGIN+I-1)+SIGMA
30 CONTINUE
* NDEPTH is the current depth of the representation tree
NDEPTH = 0
* PARITY is either 1 or 0
PARITY = 1
* NCLUS is the number of clusters for the next level of the
* representation tree, we start with NCLUS = 1 for the root
NCLUS = 1
IWORK( IINDC1+1 ) = 1
IWORK( IINDC1+2 ) = IM
* IDONE is the number of eigenvectors already computed in the current
* block
IDONE = 0
* loop while( IDONE.LT.IM )
* generate the representation tree for the current block and
* compute the eigenvectors
40 CONTINUE
IF( IDONE.LT.IM ) THEN
* This is a crude protection against infinitely deep trees
IF( NDEPTH.GT.M ) THEN
INFO = -2
RETURN
ENDIF
* breadth first processing of the current level of the representation
* tree: OLDNCL = number of clusters on current level
OLDNCL = NCLUS
* reset NCLUS to count the number of child clusters
NCLUS = 0
*
PARITY = 1 - PARITY
IF( PARITY.EQ.0 ) THEN
OLDCLS = IINDC1
NEWCLS = IINDC2
ELSE
OLDCLS = IINDC2
NEWCLS = IINDC1
END IF
* Process the clusters on the current level
DO 150 I = 1, OLDNCL
J = OLDCLS + 2*I
* OLDFST, OLDLST = first, last index of current cluster.
* cluster indices start with 1 and are relative
* to WBEGIN when accessing W, WGAP, WERR, Z
OLDFST = IWORK( J-1 )
OLDLST = IWORK( J )
IF( NDEPTH.GT.0 ) THEN
* Retrieve relatively robust representation (RRR) of cluster
* that has been computed at the previous level
* The RRR is stored in Z and overwritten once the eigenvectors
* have been computed or when the cluster is refined
IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
* Get representation from location of the leftmost evalue
* of the cluster
J = WBEGIN + OLDFST - 1
ELSE
IF(WBEGIN+OLDFST-1.LT.DOL) THEN
* Get representation from the left end of Z array
J = DOL - 1
ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN
* Get representation from the right end of Z array
J = DOU
ELSE
J = WBEGIN + OLDFST - 1
ENDIF
ENDIF
CALL DCOPY( IN, Z( IBEGIN, J ), 1, D( IBEGIN ), 1 )
CALL DCOPY( IN-1, Z( IBEGIN, J+1 ), 1, L( IBEGIN ),
$ 1 )
SIGMA = Z( IEND, J+1 )
* Set the corresponding entries in Z to zero
CALL DLASET( 'Full', IN, 2, ZERO, ZERO,
$ Z( IBEGIN, J), LDZ )
END IF
* Compute DL and DLL of current RRR
DO 50 J = IBEGIN, IEND-1
TMP = D( J )*L( J )
WORK( INDLD-1+J ) = TMP
WORK( INDLLD-1+J ) = TMP*L( J )
50 CONTINUE
IF( NDEPTH.GT.0 ) THEN
* P and Q are index of the first and last eigenvalue to compute
* within the current block
P = INDEXW( WBEGIN-1+OLDFST )
Q = INDEXW( WBEGIN-1+OLDLST )
* Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET
* through the Q-OFFSET elements of these arrays are to be used.
* OFFSET = P-OLDFST
OFFSET = INDEXW( WBEGIN ) - 1
* perform limited bisection (if necessary) to get approximate
* eigenvalues to the precision needed.
CALL DLARRB( IN, D( IBEGIN ),
$ WORK(INDLLD+IBEGIN-1),
$ P, Q, RTOL1, RTOL2, OFFSET,
$ WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
$ WORK( INDWRK ), IWORK( IINDWK ),
$ PIVMIN, SPDIAM, IN, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = -1
RETURN
ENDIF
* We also recompute the extremal gaps. W holds all eigenvalues
* of the unshifted matrix and must be used for computation
* of WGAP, the entries of WORK might stem from RRRs with
* different shifts. The gaps from WBEGIN-1+OLDFST to
* WBEGIN-1+OLDLST are correctly computed in DLARRB.
* However, we only allow the gaps to become greater since
* this is what should happen when we decrease WERR
IF( OLDFST.GT.1) THEN
WGAP( WBEGIN+OLDFST-2 ) =
$ MAX(WGAP(WBEGIN+OLDFST-2),
$ W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1)
$ - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) )
ENDIF
IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN
WGAP( WBEGIN+OLDLST-1 ) =
$ MAX(WGAP(WBEGIN+OLDLST-1),
$ W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST)
$ - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) )
ENDIF
* Each time the eigenvalues in WORK get refined, we store
* the newly found approximation with all shifts applied in W
DO 53 J=OLDFST,OLDLST
W(WBEGIN+J-1) = WORK(WBEGIN+J-1)+SIGMA
53 CONTINUE
END IF
* Process the current node.
NEWFST = OLDFST
DO 140 J = OLDFST, OLDLST
IF( J.EQ.OLDLST ) THEN
* we are at the right end of the cluster, this is also the
* boundary of the child cluster
NEWLST = J
ELSE IF ( WGAP( WBEGIN + J -1).GE.
$ MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN
* the right relative gap is big enough, the child cluster
* (NEWFST,..,NEWLST) is well separated from the following
NEWLST = J
ELSE
* inside a child cluster, the relative gap is not
* big enough.
GOTO 140
END IF
* Compute size of child cluster found
NEWSIZ = NEWLST - NEWFST + 1
* NEWFTT is the place in Z where the new RRR or the computed
* eigenvector is to be stored
IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
* Store representation at location of the leftmost evalue
* of the cluster
NEWFTT = WBEGIN + NEWFST - 1
ELSE
IF(WBEGIN+NEWFST-1.LT.DOL) THEN
* Store representation at the left end of Z array
NEWFTT = DOL - 1
ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN
* Store representation at the right end of Z array
NEWFTT = DOU
ELSE
NEWFTT = WBEGIN + NEWFST - 1
ENDIF
ENDIF
IF( NEWSIZ.GT.1) THEN
*
* Current child is not a singleton but a cluster.
* Compute and store new representation of child.
*
*
* Compute left and right cluster gap.
*
* LGAP and RGAP are not computed from WORK because
* the eigenvalue approximations may stem from RRRs
* different shifts. However, W hold all eigenvalues
* of the unshifted matrix. Still, the entries in WGAP
* have to be computed from WORK since the entries
* in W might be of the same order so that gaps are not
* exhibited correctly for very close eigenvalues.
IF( NEWFST.EQ.1 ) THEN
LGAP = MAX( ZERO,
$ W(WBEGIN)-WERR(WBEGIN) - VL )
ELSE
LGAP = WGAP( WBEGIN+NEWFST-2 )
ENDIF
RGAP = WGAP( WBEGIN+NEWLST-1 )
*
* Compute left- and rightmost eigenvalue of child
* to high precision in order to shift as close
* as possible and obtain as large relative gaps
* as possible
*
DO 55 K =1,2
IF(K.EQ.1) THEN
P = INDEXW( WBEGIN-1+NEWFST )
ELSE
P = INDEXW( WBEGIN-1+NEWLST )
ENDIF
OFFSET = INDEXW( WBEGIN ) - 1
CALL DLARRB( IN, D(IBEGIN),
$ WORK( INDLLD+IBEGIN-1 ),P,P,
$ RQTOL, RQTOL, OFFSET,
$ WORK(WBEGIN),WGAP(WBEGIN),
$ WERR(WBEGIN),WORK( INDWRK ),
$ IWORK( IINDWK ), PIVMIN, SPDIAM,
$ IN, IINFO )
55 CONTINUE
*
IF((WBEGIN+NEWLST-1.LT.DOL).OR.
$ (WBEGIN+NEWFST-1.GT.DOU)) THEN
* if the cluster contains no desired eigenvalues
* skip the computation of that branch of the rep. tree
*
* We could skip before the refinement of the extremal
* eigenvalues of the child, but then the representation
* tree could be different from the one when nothing is
* skipped. For this reason we skip at this place.
IDONE = IDONE + NEWLST - NEWFST + 1
GOTO 139
ENDIF
*
* Compute RRR of child cluster.
* Note that the new RRR is stored in Z
*
* DLARRF needs LWORK = 2*N
CALL DLARRF( IN, D( IBEGIN ), L( IBEGIN ),
$ WORK(INDLD+IBEGIN-1),
$ NEWFST, NEWLST, WORK(WBEGIN),
$ WGAP(WBEGIN), WERR(WBEGIN),
$ SPDIAM, LGAP, RGAP, PIVMIN, TAU,
$ Z(IBEGIN, NEWFTT),Z(IBEGIN, NEWFTT+1),
$ WORK( INDWRK ), IINFO )
IF( IINFO.EQ.0 ) THEN
* a new RRR for the cluster was found by DLARRF
* update shift and store it
SSIGMA = SIGMA + TAU
Z( IEND, NEWFTT+1 ) = SSIGMA
* WORK() are the midpoints and WERR() the semi-width
* Note that the entries in W are unchanged.
DO 116 K = NEWFST, NEWLST
FUDGE =
$ THREE*EPS*ABS(WORK(WBEGIN+K-1))
WORK( WBEGIN + K - 1 ) =
$ WORK( WBEGIN + K - 1) - TAU
FUDGE = FUDGE +
$ FOUR*EPS*ABS(WORK(WBEGIN+K-1))
* Fudge errors
WERR( WBEGIN + K - 1 ) =
$ WERR( WBEGIN + K - 1 ) + FUDGE
* Gaps are not fudged. Provided that WERR is small
* when eigenvalues are close, a zero gap indicates
* that a new representation is needed for resolving
* the cluster. A fudge could lead to a wrong decision
* of judging eigenvalues 'separated' which in
* reality are not. This could have a negative impact
* on the orthogonality of the computed eigenvectors.
116 CONTINUE
NCLUS = NCLUS + 1
K = NEWCLS + 2*NCLUS
IWORK( K-1 ) = NEWFST
IWORK( K ) = NEWLST
ELSE
INFO = -2
RETURN
ENDIF
ELSE
*
* Compute eigenvector of singleton
*
ITER = 0
*
TOL = FOUR * LOG(DBLE(IN)) * EPS
*
K = NEWFST
WINDEX = WBEGIN + K - 1
WINDMN = MAX(WINDEX - 1,1)
WINDPL = MIN(WINDEX + 1,M)
LAMBDA = WORK( WINDEX )
DONE = DONE + 1
* Check if eigenvector computation is to be skipped
IF((WINDEX.LT.DOL).OR.
$ (WINDEX.GT.DOU)) THEN
ESKIP = .TRUE.
GOTO 125
ELSE
ESKIP = .FALSE.
ENDIF
LEFT = WORK( WINDEX ) - WERR( WINDEX )
RIGHT = WORK( WINDEX ) + WERR( WINDEX )
INDEIG = INDEXW( WINDEX )
* Note that since we compute the eigenpairs for a child,
* all eigenvalue approximations are w.r.t the same shift.
* In this case, the entries in WORK should be used for
* computing the gaps since they exhibit even very small
* differences in the eigenvalues, as opposed to the
* entries in W which might "look" the same.
IF( K .EQ. 1) THEN
* In the case RANGE='I' and with not much initial
* accuracy in LAMBDA and VL, the formula
* LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA )
* can lead to an overestimation of the left gap and
* thus to inadequately early RQI 'convergence'.
* Prevent this by forcing a small left gap.
LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
ELSE
LGAP = WGAP(WINDMN)
ENDIF
IF( K .EQ. IM) THEN
* In the case RANGE='I' and with not much initial
* accuracy in LAMBDA and VU, the formula
* can lead to an overestimation of the right gap and
* thus to inadequately early RQI 'convergence'.
* Prevent this by forcing a small right gap.
RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
ELSE
RGAP = WGAP(WINDEX)
ENDIF
GAP = MIN( LGAP, RGAP )
IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN
* The eigenvector support can become wrong
* because significant entries could be cut off due to a
* large GAPTOL parameter in LAR1V. Prevent this.
GAPTOL = ZERO
ELSE
GAPTOL = GAP * EPS
ENDIF
ISUPMN = IN
ISUPMX = 1
* Update WGAP so that it holds the minimum gap
* to the left or the right. This is crucial in the
* case where bisection is used to ensure that the
* eigenvalue is refined up to the required precision.
* The correct value is restored afterwards.
SAVGAP = WGAP(WINDEX)
WGAP(WINDEX) = GAP
* We want to use the Rayleigh Quotient Correction
* as often as possible since it converges quadratically
* when we are close enough to the desired eigenvalue.
* However, the Rayleigh Quotient can have the wrong sign
* and lead us away from the desired eigenvalue. In this
* case, the best we can do is to use bisection.
USEDBS = .FALSE.
USEDRQ = .FALSE.
* Bisection is initially turned off unless it is forced
NEEDBS = .NOT.TRYRQC
120 CONTINUE
* Check if bisection should be used to refine eigenvalue
IF(NEEDBS) THEN
* Take the bisection as new iterate
USEDBS = .TRUE.
ITMP1 = IWORK( IINDR+WINDEX )
OFFSET = INDEXW( WBEGIN ) - 1
CALL DLARRB( IN, D(IBEGIN),
$ WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG,
$ ZERO, TWO*EPS, OFFSET,
$ WORK(WBEGIN),WGAP(WBEGIN),
$ WERR(WBEGIN),WORK( INDWRK ),
$ IWORK( IINDWK ), PIVMIN, SPDIAM,
$ ITMP1, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = -3
RETURN
ENDIF
LAMBDA = WORK( WINDEX )
* Reset twist index from inaccurate LAMBDA to
* force computation of true MINGMA
IWORK( IINDR+WINDEX ) = 0
ENDIF
* Given LAMBDA, compute the eigenvector.
CALL DLAR1V( IN, 1, IN, LAMBDA, D( IBEGIN ),
$ L( IBEGIN ), WORK(INDLD+IBEGIN-1),
$ WORK(INDLLD+IBEGIN-1),
$ PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
$ .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
$ IWORK( IINDR+WINDEX ), ISUPPZ( 2*WINDEX-1 ),
$ NRMINV, RESID, RQCORR, WORK( INDWRK ) )
IF(ITER .EQ. 0) THEN
BSTRES = RESID
BSTW = LAMBDA
ELSEIF(RESID.LT.BSTRES) THEN
BSTRES = RESID
BSTW = LAMBDA
ENDIF
ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 ))
ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX ))
ITER = ITER + 1
* sin alpha <= |resid|/gap
* Note that both the residual and the gap are
* proportional to the matrix, so ||T|| doesn't play
* a role in the quotient
*
* Convergence test for Rayleigh-Quotient iteration
* (omitted when Bisection has been used)
*
IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
$ RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS)
$ THEN
* We need to check that the RQCORR update doesn't
* move the eigenvalue away from the desired one and
* towards a neighbor. -> protection with bisection
IF(INDEIG.LE.NEGCNT) THEN
* The wanted eigenvalue lies to the left
SGNDEF = -ONE
ELSE
* The wanted eigenvalue lies to the right
SGNDEF = ONE
ENDIF
* We only use the RQCORR if it improves the
* the iterate reasonably.
IF( ( RQCORR*SGNDEF.GE.ZERO )
$ .AND.( LAMBDA + RQCORR.LE. RIGHT)
$ .AND.( LAMBDA + RQCORR.GE. LEFT)
$ ) THEN
USEDRQ = .TRUE.
* Store new midpoint of bisection interval in WORK
IF(SGNDEF.EQ.ONE) THEN
* The current LAMBDA is on the left of the true
* eigenvalue
LEFT = LAMBDA
* We prefer to assume that the error estimate
* is correct. We could make the interval not
* as a bracket but to be modified if the RQCORR
* chooses to. In this case, the RIGHT side should
* be modified as follows:
* RIGHT = MAX(RIGHT, LAMBDA + RQCORR)
ELSE
* The current LAMBDA is on the right of the true
* eigenvalue
RIGHT = LAMBDA
* See comment about assuming the error estimate is
* correct above.
* LEFT = MIN(LEFT, LAMBDA + RQCORR)
ENDIF
WORK( WINDEX ) =
$ HALF * (RIGHT + LEFT)
* Take RQCORR since it has the correct sign and
* improves the iterate reasonably
LAMBDA = LAMBDA + RQCORR
* Update width of error interval
WERR( WINDEX ) =
$ HALF * (RIGHT-LEFT)
ELSE
NEEDBS = .TRUE.
ENDIF
IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN
* The eigenvalue is computed to bisection accuracy
* compute eigenvector and stop
USEDBS = .TRUE.
GOTO 120
ELSEIF( ITER.LT.MAXITR ) THEN
GOTO 120
ELSEIF( ITER.EQ.MAXITR ) THEN
NEEDBS = .TRUE.
GOTO 120
ELSE
INFO = 5
RETURN
END IF
ELSE
STP2II = .FALSE.
IF(USEDRQ .AND. USEDBS .AND.
$ BSTRES.LE.RESID) THEN
LAMBDA = BSTW
STP2II = .TRUE.
ENDIF
IF (STP2II) THEN
* improve error angle by second step
CALL DLAR1V( IN, 1, IN, LAMBDA,
$ D( IBEGIN ), L( IBEGIN ),
$ WORK(INDLD+IBEGIN-1),
$ WORK(INDLLD+IBEGIN-1),
$ PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
$ .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
$ IWORK( IINDR+WINDEX ),
$ ISUPPZ( 2*WINDEX-1 ),
$ NRMINV, RESID, RQCORR, WORK( INDWRK ) )
ENDIF
WORK( WINDEX ) = LAMBDA
END IF
*
* Compute FP-vector support w.r.t. whole matrix
*
ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN
ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN
ZFROM = ISUPPZ( 2*WINDEX-1 )
ZTO = ISUPPZ( 2*WINDEX )
ISUPMN = ISUPMN + OLDIEN
ISUPMX = ISUPMX + OLDIEN
* Ensure vector is ok if support in the RQI has changed
IF(ISUPMN.LT.ZFROM) THEN
DO 122 II = ISUPMN,ZFROM-1
Z( II, WINDEX ) = ZERO
122 CONTINUE
ENDIF
IF(ISUPMX.GT.ZTO) THEN
DO 123 II = ZTO+1,ISUPMX
Z( II, WINDEX ) = ZERO
123 CONTINUE
ENDIF
CALL DSCAL( ZTO-ZFROM+1, NRMINV,
$ Z( ZFROM, WINDEX ), 1 )
125 CONTINUE
* Update W
W( WINDEX ) = LAMBDA+SIGMA
* Recompute the gaps on the left and right
* But only allow them to become larger and not
* smaller (which can only happen through "bad"
* cancellation and doesn't reflect the theory
* where the initial gaps are underestimated due
* to WERR being too crude.)
IF(.NOT.ESKIP) THEN
IF( K.GT.1) THEN
WGAP( WINDMN ) = MAX( WGAP(WINDMN),
$ W(WINDEX)-WERR(WINDEX)
$ - W(WINDMN)-WERR(WINDMN) )
ENDIF
IF( WINDEX.LT.WEND ) THEN
WGAP( WINDEX ) = MAX( SAVGAP,
$ W( WINDPL )-WERR( WINDPL )
$ - W( WINDEX )-WERR( WINDEX) )
ENDIF
ENDIF
IDONE = IDONE + 1
ENDIF
* here ends the code for the current child
*
139 CONTINUE
* Proceed to any remaining child nodes
NEWFST = J + 1
140 CONTINUE
150 CONTINUE
NDEPTH = NDEPTH + 1
GO TO 40
END IF
IBEGIN = IEND + 1
WBEGIN = WEND + 1
170 CONTINUE
*
RETURN
*
* End of DLARRV
*
END
|