summaryrefslogtreecommitdiff
path: root/SRC/dlaqp2.f
blob: 192df23a48b8fc29a8f2f8bccce76ab504a8cfba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
      SUBROUTINE DLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
     $                   WORK )
*
*  -- LAPACK auxiliary routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      INTEGER            LDA, M, N, OFFSET
*     ..
*     .. Array Arguments ..
      INTEGER            JPVT( * )
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), VN1( * ), VN2( * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DLAQP2 computes a QR factorization with column pivoting of
*  the block A(OFFSET+1:M,1:N).
*  The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A. N >= 0.
*
*  OFFSET  (input) INTEGER
*          The number of rows of the matrix A that must be pivoted
*          but no factorized. OFFSET >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the M-by-N matrix A.
*          On exit, the upper triangle of block A(OFFSET+1:M,1:N) is 
*          the triangular factor obtained; the elements in block
*          A(OFFSET+1:M,1:N) below the diagonal, together with the
*          array TAU, represent the orthogonal matrix Q as a product of
*          elementary reflectors. Block A(1:OFFSET,1:N) has been
*          accordingly pivoted, but no factorized.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,M).
*
*  JPVT    (input/output) INTEGER array, dimension (N)
*          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
*          to the front of A*P (a leading column); if JPVT(i) = 0,
*          the i-th column of A is a free column.
*          On exit, if JPVT(i) = k, then the i-th column of A*P
*          was the k-th column of A.
*
*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors.
*
*  VN1     (input/output) DOUBLE PRECISION array, dimension (N)
*          The vector with the partial column norms.
*
*  VN2     (input/output) DOUBLE PRECISION array, dimension (N)
*          The vector with the exact column norms.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (N)
*
*  Further Details
*  ===============
*
*  Based on contributions by
*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
*    X. Sun, Computer Science Dept., Duke University, USA
*
*  Partial column norm updating strategy modified by
*    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
*    University of Zagreb, Croatia.
*  -- April 2011                                                      --
*  For more details see LAPACK Working Note 176.
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, ITEMP, J, MN, OFFPI, PVT
      DOUBLE PRECISION   AII, TEMP, TEMP2, TOL3Z
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLARF, DLARFG, DSWAP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
*     ..
*     .. External Functions ..
      INTEGER            IDAMAX
      DOUBLE PRECISION   DLAMCH, DNRM2
      EXTERNAL           IDAMAX, DLAMCH, DNRM2
*     ..
*     .. Executable Statements ..
*
      MN = MIN( M-OFFSET, N )
      TOL3Z = SQRT(DLAMCH('Epsilon'))
*
*     Compute factorization.
*
      DO 20 I = 1, MN
*
         OFFPI = OFFSET + I
*
*        Determine ith pivot column and swap if necessary.
*
         PVT = ( I-1 ) + IDAMAX( N-I+1, VN1( I ), 1 )
*
         IF( PVT.NE.I ) THEN
            CALL DSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 )
            ITEMP = JPVT( PVT )
            JPVT( PVT ) = JPVT( I )
            JPVT( I ) = ITEMP
            VN1( PVT ) = VN1( I )
            VN2( PVT ) = VN2( I )
         END IF
*
*        Generate elementary reflector H(i).
*
         IF( OFFPI.LT.M ) THEN
            CALL DLARFG( M-OFFPI+1, A( OFFPI, I ), A( OFFPI+1, I ), 1,
     $                   TAU( I ) )
         ELSE
            CALL DLARFG( 1, A( M, I ), A( M, I ), 1, TAU( I ) )
         END IF
*
         IF( I.LE.N ) THEN
*
*           Apply H(i)**T to A(offset+i:m,i+1:n) from the left.
*
            AII = A( OFFPI, I )
            A( OFFPI, I ) = ONE
            CALL DLARF( 'Left', M-OFFPI+1, N-I, A( OFFPI, I ), 1,
     $                  TAU( I ), A( OFFPI, I+1 ), LDA, WORK( 1 ) )
            A( OFFPI, I ) = AII
         END IF
*
*        Update partial column norms.
*
         DO 10 J = I + 1, N
            IF( VN1( J ).NE.ZERO ) THEN
*
*              NOTE: The following 4 lines follow from the analysis in
*              Lapack Working Note 176.
*
               TEMP = ONE - ( ABS( A( OFFPI, J ) ) / VN1( J ) )**2
               TEMP = MAX( TEMP, ZERO )
               TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
               IF( TEMP2 .LE. TOL3Z ) THEN
                  IF( OFFPI.LT.M ) THEN
                     VN1( J ) = DNRM2( M-OFFPI, A( OFFPI+1, J ), 1 )
                     VN2( J ) = VN1( J )
                  ELSE
                     VN1( J ) = ZERO
                     VN2( J ) = ZERO
                  END IF
               ELSE
                  VN1( J ) = VN1( J )*SQRT( TEMP )
               END IF
            END IF
   10    CONTINUE
*
   20 CONTINUE
*
      RETURN
*
*     End of DLAQP2
*
      END