1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
*> \brief \b DLAPLL
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> Download DLAPLL + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlapll.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlapll.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlapll.f">
*> [TXT]</a>
*
* Definition
* ==========
*
* SUBROUTINE DLAPLL( N, X, INCX, Y, INCY, SSMIN )
*
* .. Scalar Arguments ..
* INTEGER INCX, INCY, N
* DOUBLE PRECISION SSMIN
* ..
* .. Array Arguments ..
* DOUBLE PRECISION X( * ), Y( * )
* ..
*
* Purpose
* =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> Given two column vectors X and Y, let
*>
*> A = ( X Y ).
*>
*> The subroutine first computes the QR factorization of A = Q*R,
*> and then computes the SVD of the 2-by-2 upper triangular matrix R.
*> The smaller singular value of R is returned in SSMIN, which is used
*> as the measurement of the linear dependency of the vectors X and Y.
*>
*>\endverbatim
*
* Arguments
* =========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The length of the vectors X and Y.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is DOUBLE PRECISION array,
*> dimension (1+(N-1)*INCX)
*> On entry, X contains the N-vector X.
*> On exit, X is overwritten.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> The increment between successive elements of X. INCX > 0.
*> \endverbatim
*>
*> \param[in,out] Y
*> \verbatim
*> Y is DOUBLE PRECISION array,
*> dimension (1+(N-1)*INCY)
*> On entry, Y contains the N-vector Y.
*> On exit, Y is overwritten.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> The increment between successive elements of Y. INCY > 0.
*> \endverbatim
*>
*> \param[out] SSMIN
*> \verbatim
*> SSMIN is DOUBLE PRECISION
*> The smallest singular value of the N-by-2 matrix A = ( X Y ).
*> \endverbatim
*>
*
* Authors
* =======
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup doubleOTHERauxiliary
*
* =====================================================================
SUBROUTINE DLAPLL( N, X, INCX, Y, INCY, SSMIN )
*
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INCX, INCY, N
DOUBLE PRECISION SSMIN
* ..
* .. Array Arguments ..
DOUBLE PRECISION X( * ), Y( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
DOUBLE PRECISION A11, A12, A22, C, SSMAX, TAU
* ..
* .. External Functions ..
DOUBLE PRECISION DDOT
EXTERNAL DDOT
* ..
* .. External Subroutines ..
EXTERNAL DAXPY, DLARFG, DLAS2
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.1 ) THEN
SSMIN = ZERO
RETURN
END IF
*
* Compute the QR factorization of the N-by-2 matrix ( X Y )
*
CALL DLARFG( N, X( 1 ), X( 1+INCX ), INCX, TAU )
A11 = X( 1 )
X( 1 ) = ONE
*
C = -TAU*DDOT( N, X, INCX, Y, INCY )
CALL DAXPY( N, C, X, INCX, Y, INCY )
*
CALL DLARFG( N-1, Y( 1+INCY ), Y( 1+2*INCY ), INCY, TAU )
*
A12 = Y( 1 )
A22 = Y( 1+INCY )
*
* Compute the SVD of 2-by-2 Upper triangular matrix.
*
CALL DLAS2( A11, A12, A22, SSMIN, SSMAX )
*
RETURN
*
* End of DLAPLL
*
END
|