summaryrefslogtreecommitdiff
path: root/SRC/dlangb.f
blob: fa9c12cbd2bb0455914ba94142ce43c73c76c9f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
*> \brief \b DLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download DLANGB + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlangb.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlangb.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlangb.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       DOUBLE PRECISION FUNCTION DLANGB( NORM, N, KL, KU, AB, LDAB,
*                        WORK )
* 
*       .. Scalar Arguments ..
*       CHARACTER          NORM
*       INTEGER            KL, KU, LDAB, N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   AB( LDAB, * ), WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DLANGB  returns the value of the one norm,  or the Frobenius norm, or
*> the  infinity norm,  or the element of  largest absolute value  of an
*> n by n band matrix  A,  with kl sub-diagonals and ku super-diagonals.
*> \endverbatim
*>
*> \return DLANGB
*> \verbatim
*>
*>    DLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*>             (
*>             ( norm1(A),         NORM = '1', 'O' or 'o'
*>             (
*>             ( normI(A),         NORM = 'I' or 'i'
*>             (
*>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*>
*> where  norm1  denotes the  one norm of a matrix (maximum column sum),
*> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*> normF  denotes the  Frobenius norm of a matrix (square root of sum of
*> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] NORM
*> \verbatim
*>          NORM is CHARACTER*1
*>          Specifies the value to be returned in DLANGB as described
*>          above.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.  When N = 0, DLANGB is
*>          set to zero.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*>          KL is INTEGER
*>          The number of sub-diagonals of the matrix A.  KL >= 0.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*>          KU is INTEGER
*>          The number of super-diagonals of the matrix A.  KU >= 0.
*> \endverbatim
*>
*> \param[in] AB
*> \verbatim
*>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
*>          The band matrix A, stored in rows 1 to KL+KU+1.  The j-th
*>          column of A is stored in the j-th column of the array AB as
*>          follows:
*>          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= KL+KU+1.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
*>          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
*>          referenced.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date August 2012
*
*> \ingroup doubleGBauxiliary
*
*  =====================================================================
      DOUBLE PRECISION FUNCTION DLANGB( NORM, N, KL, KU, AB, LDAB,
     $                 WORK )
*
*  -- LAPACK auxiliary routine (version 3.4.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     August 2012
*
*     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            KL, KU, LDAB, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   AB( LDAB, * ), WORK( * )
*     ..
*
* =====================================================================
*
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, K, L
      DOUBLE PRECISION   SCALE, SUM, VALUE, TEMP
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLASSQ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME, DISNAN
      EXTERNAL           LSAME, DISNAN
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( N.EQ.0 ) THEN
         VALUE = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         VALUE = ZERO
         DO 20 J = 1, N
            DO 10 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
               TEMP = ABS( AB( I, J ) )
               IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
   10       CONTINUE
   20    CONTINUE
      ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
*
*        Find norm1(A).
*
         VALUE = ZERO
         DO 40 J = 1, N
            SUM = ZERO
            DO 30 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
               SUM = SUM + ABS( AB( I, J ) )
   30       CONTINUE
            IF( VALUE.LT.SUM .OR. DISNAN( SUM ) ) VALUE = SUM
   40    CONTINUE
      ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
*        Find normI(A).
*
         DO 50 I = 1, N
            WORK( I ) = ZERO
   50    CONTINUE
         DO 70 J = 1, N
            K = KU + 1 - J
            DO 60 I = MAX( 1, J-KU ), MIN( N, J+KL )
               WORK( I ) = WORK( I ) + ABS( AB( K+I, J ) )
   60       CONTINUE
   70    CONTINUE
         VALUE = ZERO
         DO 80 I = 1, N
            TEMP = WORK( I )
            IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
   80    CONTINUE
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*
         SCALE = ZERO
         SUM = ONE
         DO 90 J = 1, N
            L = MAX( 1, J-KU )
            K = KU + 1 - J + L
            CALL DLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1, SCALE, SUM )
   90    CONTINUE
         VALUE = SCALE*SQRT( SUM )
      END IF
*
      DLANGB = VALUE
      RETURN
*
*     End of DLANGB
*
      END