1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
|
*> \brief \b DLALSD uses the singular value decomposition of A to solve the least squares problem.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLALSD + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsd.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsd.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsd.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
* RANK, WORK, IWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ
* DOUBLE PRECISION RCOND
* ..
* .. Array Arguments ..
* INTEGER IWORK( * )
* DOUBLE PRECISION B( LDB, * ), D( * ), E( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLALSD uses the singular value decomposition of A to solve the least
*> squares problem of finding X to minimize the Euclidean norm of each
*> column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
*> are N-by-NRHS. The solution X overwrites B.
*>
*> The singular values of A smaller than RCOND times the largest
*> singular value are treated as zero in solving the least squares
*> problem; in this case a minimum norm solution is returned.
*> The actual singular values are returned in D in ascending order.
*>
*> This code makes very mild assumptions about floating point
*> arithmetic. It will work on machines with a guard digit in
*> add/subtract, or on those binary machines without guard digits
*> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
*> It could conceivably fail on hexadecimal or decimal machines
*> without guard digits, but we know of none.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': D and E define an upper bidiagonal matrix.
*> = 'L': D and E define a lower bidiagonal matrix.
*> \endverbatim
*>
*> \param[in] SMLSIZ
*> \verbatim
*> SMLSIZ is INTEGER
*> The maximum size of the subproblems at the bottom of the
*> computation tree.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The dimension of the bidiagonal matrix. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of columns of B. NRHS must be at least 1.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> On entry D contains the main diagonal of the bidiagonal
*> matrix. On exit, if INFO = 0, D contains its singular values.
*> \endverbatim
*>
*> \param[in,out] E
*> \verbatim
*> E is DOUBLE PRECISION array, dimension (N-1)
*> Contains the super-diagonal entries of the bidiagonal matrix.
*> On exit, E has been destroyed.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
*> On input, B contains the right hand sides of the least
*> squares problem. On output, B contains the solution X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of B in the calling subprogram.
*> LDB must be at least max(1,N).
*> \endverbatim
*>
*> \param[in] RCOND
*> \verbatim
*> RCOND is DOUBLE PRECISION
*> The singular values of A less than or equal to RCOND times
*> the largest singular value are treated as zero in solving
*> the least squares problem. If RCOND is negative,
*> machine precision is used instead.
*> For example, if diag(S)*X=B were the least squares problem,
*> where diag(S) is a diagonal matrix of singular values, the
*> solution would be X(i) = B(i) / S(i) if S(i) is greater than
*> RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
*> RCOND*max(S).
*> \endverbatim
*>
*> \param[out] RANK
*> \verbatim
*> RANK is INTEGER
*> The number of singular values of A greater than RCOND times
*> the largest singular value.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension at least
*> (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
*> where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension at least
*> (3*N*NLVL + 11*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: The algorithm failed to compute a singular value while
*> working on the submatrix lying in rows and columns
*> INFO/(N+1) through MOD(INFO,N+1).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date August 2012
*
*> \ingroup doubleOTHERcomputational
*
*> \par Contributors:
* ==================
*>
*> Ming Gu and Ren-Cang Li, Computer Science Division, University of
*> California at Berkeley, USA \n
*> Osni Marques, LBNL/NERSC, USA \n
*
* =====================================================================
SUBROUTINE DLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
$ RANK, WORK, IWORK, INFO )
*
* -- LAPACK computational routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* August 2012
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ
DOUBLE PRECISION RCOND
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION B( LDB, * ), D( * ), E( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
* ..
* .. Local Scalars ..
INTEGER BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,
$ GIVPTR, I, ICMPQ1, ICMPQ2, IWK, J, K, NLVL,
$ NM1, NSIZE, NSUB, NWORK, PERM, POLES, S, SIZEI,
$ SMLSZP, SQRE, ST, ST1, U, VT, Z
DOUBLE PRECISION CS, EPS, ORGNRM, R, RCND, SN, TOL
* ..
* .. External Functions ..
INTEGER IDAMAX
DOUBLE PRECISION DLAMCH, DLANST
EXTERNAL IDAMAX, DLAMCH, DLANST
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DGEMM, DLACPY, DLALSA, DLARTG, DLASCL,
$ DLASDA, DLASDQ, DLASET, DLASRT, DROT, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, INT, LOG, SIGN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
*
IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( NRHS.LT.1 ) THEN
INFO = -4
ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DLALSD', -INFO )
RETURN
END IF
*
EPS = DLAMCH( 'Epsilon' )
*
* Set up the tolerance.
*
IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN
RCND = EPS
ELSE
RCND = RCOND
END IF
*
RANK = 0
*
* Quick return if possible.
*
IF( N.EQ.0 ) THEN
RETURN
ELSE IF( N.EQ.1 ) THEN
IF( D( 1 ).EQ.ZERO ) THEN
CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, B, LDB )
ELSE
RANK = 1
CALL DLASCL( 'G', 0, 0, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )
D( 1 ) = ABS( D( 1 ) )
END IF
RETURN
END IF
*
* Rotate the matrix if it is lower bidiagonal.
*
IF( UPLO.EQ.'L' ) THEN
DO 10 I = 1, N - 1
CALL DLARTG( D( I ), E( I ), CS, SN, R )
D( I ) = R
E( I ) = SN*D( I+1 )
D( I+1 ) = CS*D( I+1 )
IF( NRHS.EQ.1 ) THEN
CALL DROT( 1, B( I, 1 ), 1, B( I+1, 1 ), 1, CS, SN )
ELSE
WORK( I*2-1 ) = CS
WORK( I*2 ) = SN
END IF
10 CONTINUE
IF( NRHS.GT.1 ) THEN
DO 30 I = 1, NRHS
DO 20 J = 1, N - 1
CS = WORK( J*2-1 )
SN = WORK( J*2 )
CALL DROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )
20 CONTINUE
30 CONTINUE
END IF
END IF
*
* Scale.
*
NM1 = N - 1
ORGNRM = DLANST( 'M', N, D, E )
IF( ORGNRM.EQ.ZERO ) THEN
CALL DLASET( 'A', N, NRHS, ZERO, ZERO, B, LDB )
RETURN
END IF
*
CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, INFO )
*
* If N is smaller than the minimum divide size SMLSIZ, then solve
* the problem with another solver.
*
IF( N.LE.SMLSIZ ) THEN
NWORK = 1 + N*N
CALL DLASET( 'A', N, N, ZERO, ONE, WORK, N )
CALL DLASDQ( 'U', 0, N, N, 0, NRHS, D, E, WORK, N, WORK, N, B,
$ LDB, WORK( NWORK ), INFO )
IF( INFO.NE.0 ) THEN
RETURN
END IF
TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
DO 40 I = 1, N
IF( D( I ).LE.TOL ) THEN
CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
ELSE
CALL DLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS, B( I, 1 ),
$ LDB, INFO )
RANK = RANK + 1
END IF
40 CONTINUE
CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
$ WORK( NWORK ), N )
CALL DLACPY( 'A', N, NRHS, WORK( NWORK ), N, B, LDB )
*
* Unscale.
*
CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
CALL DLASRT( 'D', N, D, INFO )
CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
*
RETURN
END IF
*
* Book-keeping and setting up some constants.
*
NLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
*
SMLSZP = SMLSIZ + 1
*
U = 1
VT = 1 + SMLSIZ*N
DIFL = VT + SMLSZP*N
DIFR = DIFL + NLVL*N
Z = DIFR + NLVL*N*2
C = Z + NLVL*N
S = C + N
POLES = S + N
GIVNUM = POLES + 2*NLVL*N
BX = GIVNUM + 2*NLVL*N
NWORK = BX + N*NRHS
*
SIZEI = 1 + N
K = SIZEI + N
GIVPTR = K + N
PERM = GIVPTR + N
GIVCOL = PERM + NLVL*N
IWK = GIVCOL + NLVL*N*2
*
ST = 1
SQRE = 0
ICMPQ1 = 1
ICMPQ2 = 0
NSUB = 0
*
DO 50 I = 1, N
IF( ABS( D( I ) ).LT.EPS ) THEN
D( I ) = SIGN( EPS, D( I ) )
END IF
50 CONTINUE
*
DO 60 I = 1, NM1
IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
NSUB = NSUB + 1
IWORK( NSUB ) = ST
*
* Subproblem found. First determine its size and then
* apply divide and conquer on it.
*
IF( I.LT.NM1 ) THEN
*
* A subproblem with E(I) small for I < NM1.
*
NSIZE = I - ST + 1
IWORK( SIZEI+NSUB-1 ) = NSIZE
ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
*
* A subproblem with E(NM1) not too small but I = NM1.
*
NSIZE = N - ST + 1
IWORK( SIZEI+NSUB-1 ) = NSIZE
ELSE
*
* A subproblem with E(NM1) small. This implies an
* 1-by-1 subproblem at D(N), which is not solved
* explicitly.
*
NSIZE = I - ST + 1
IWORK( SIZEI+NSUB-1 ) = NSIZE
NSUB = NSUB + 1
IWORK( NSUB ) = N
IWORK( SIZEI+NSUB-1 ) = 1
CALL DCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )
END IF
ST1 = ST - 1
IF( NSIZE.EQ.1 ) THEN
*
* This is a 1-by-1 subproblem and is not solved
* explicitly.
*
CALL DCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )
ELSE IF( NSIZE.LE.SMLSIZ ) THEN
*
* This is a small subproblem and is solved by DLASDQ.
*
CALL DLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
$ WORK( VT+ST1 ), N )
CALL DLASDQ( 'U', 0, NSIZE, NSIZE, 0, NRHS, D( ST ),
$ E( ST ), WORK( VT+ST1 ), N, WORK( NWORK ),
$ N, B( ST, 1 ), LDB, WORK( NWORK ), INFO )
IF( INFO.NE.0 ) THEN
RETURN
END IF
CALL DLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,
$ WORK( BX+ST1 ), N )
ELSE
*
* A large problem. Solve it using divide and conquer.
*
CALL DLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),
$ E( ST ), WORK( U+ST1 ), N, WORK( VT+ST1 ),
$ IWORK( K+ST1 ), WORK( DIFL+ST1 ),
$ WORK( DIFR+ST1 ), WORK( Z+ST1 ),
$ WORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),
$ IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),
$ WORK( GIVNUM+ST1 ), WORK( C+ST1 ),
$ WORK( S+ST1 ), WORK( NWORK ), IWORK( IWK ),
$ INFO )
IF( INFO.NE.0 ) THEN
RETURN
END IF
BXST = BX + ST1
CALL DLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),
$ LDB, WORK( BXST ), N, WORK( U+ST1 ), N,
$ WORK( VT+ST1 ), IWORK( K+ST1 ),
$ WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
$ WORK( Z+ST1 ), WORK( POLES+ST1 ),
$ IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
$ IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
$ WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
$ IWORK( IWK ), INFO )
IF( INFO.NE.0 ) THEN
RETURN
END IF
END IF
ST = I + 1
END IF
60 CONTINUE
*
* Apply the singular values and treat the tiny ones as zero.
*
TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
*
DO 70 I = 1, N
*
* Some of the elements in D can be negative because 1-by-1
* subproblems were not solved explicitly.
*
IF( ABS( D( I ) ).LE.TOL ) THEN
CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, WORK( BX+I-1 ), N )
ELSE
RANK = RANK + 1
CALL DLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS,
$ WORK( BX+I-1 ), N, INFO )
END IF
D( I ) = ABS( D( I ) )
70 CONTINUE
*
* Now apply back the right singular vectors.
*
ICMPQ2 = 1
DO 80 I = 1, NSUB
ST = IWORK( I )
ST1 = ST - 1
NSIZE = IWORK( SIZEI+I-1 )
BXST = BX + ST1
IF( NSIZE.EQ.1 ) THEN
CALL DCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )
ELSE IF( NSIZE.LE.SMLSIZ ) THEN
CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
$ WORK( VT+ST1 ), N, WORK( BXST ), N, ZERO,
$ B( ST, 1 ), LDB )
ELSE
CALL DLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,
$ B( ST, 1 ), LDB, WORK( U+ST1 ), N,
$ WORK( VT+ST1 ), IWORK( K+ST1 ),
$ WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
$ WORK( Z+ST1 ), WORK( POLES+ST1 ),
$ IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
$ IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
$ WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
$ IWORK( IWK ), INFO )
IF( INFO.NE.0 ) THEN
RETURN
END IF
END IF
80 CONTINUE
*
* Unscale and sort the singular values.
*
CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
CALL DLASRT( 'D', N, D, INFO )
CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
*
RETURN
*
* End of DLALSD
*
END
|