1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
|
*> \brief \b DLALS0 applies back multiplying factors in solving the least squares problem using divide and conquer SVD approach. Used by sgelsd.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLALS0 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlals0.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlals0.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlals0.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX,
* PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
* POLES, DIFL, DIFR, Z, K, C, S, WORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL,
* $ LDGNUM, NL, NR, NRHS, SQRE
* DOUBLE PRECISION C, S
* ..
* .. Array Arguments ..
* INTEGER GIVCOL( LDGCOL, * ), PERM( * )
* DOUBLE PRECISION B( LDB, * ), BX( LDBX, * ), DIFL( * ),
* $ DIFR( LDGNUM, * ), GIVNUM( LDGNUM, * ),
* $ POLES( LDGNUM, * ), WORK( * ), Z( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLALS0 applies back the multiplying factors of either the left or the
*> right singular vector matrix of a diagonal matrix appended by a row
*> to the right hand side matrix B in solving the least squares problem
*> using the divide-and-conquer SVD approach.
*>
*> For the left singular vector matrix, three types of orthogonal
*> matrices are involved:
*>
*> (1L) Givens rotations: the number of such rotations is GIVPTR; the
*> pairs of columns/rows they were applied to are stored in GIVCOL;
*> and the C- and S-values of these rotations are stored in GIVNUM.
*>
*> (2L) Permutation. The (NL+1)-st row of B is to be moved to the first
*> row, and for J=2:N, PERM(J)-th row of B is to be moved to the
*> J-th row.
*>
*> (3L) The left singular vector matrix of the remaining matrix.
*>
*> For the right singular vector matrix, four types of orthogonal
*> matrices are involved:
*>
*> (1R) The right singular vector matrix of the remaining matrix.
*>
*> (2R) If SQRE = 1, one extra Givens rotation to generate the right
*> null space.
*>
*> (3R) The inverse transformation of (2L).
*>
*> (4R) The inverse transformation of (1L).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ICOMPQ
*> \verbatim
*> ICOMPQ is INTEGER
*> Specifies whether singular vectors are to be computed in
*> factored form:
*> = 0: Left singular vector matrix.
*> = 1: Right singular vector matrix.
*> \endverbatim
*>
*> \param[in] NL
*> \verbatim
*> NL is INTEGER
*> The row dimension of the upper block. NL >= 1.
*> \endverbatim
*>
*> \param[in] NR
*> \verbatim
*> NR is INTEGER
*> The row dimension of the lower block. NR >= 1.
*> \endverbatim
*>
*> \param[in] SQRE
*> \verbatim
*> SQRE is INTEGER
*> = 0: the lower block is an NR-by-NR square matrix.
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
*>
*> The bidiagonal matrix has row dimension N = NL + NR + 1,
*> and column dimension M = N + SQRE.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of columns of B and BX. NRHS must be at least 1.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension ( LDB, NRHS )
*> On input, B contains the right hand sides of the least
*> squares problem in rows 1 through M. On output, B contains
*> the solution X in rows 1 through N.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of B. LDB must be at least
*> max(1,MAX( M, N ) ).
*> \endverbatim
*>
*> \param[out] BX
*> \verbatim
*> BX is DOUBLE PRECISION array, dimension ( LDBX, NRHS )
*> \endverbatim
*>
*> \param[in] LDBX
*> \verbatim
*> LDBX is INTEGER
*> The leading dimension of BX.
*> \endverbatim
*>
*> \param[in] PERM
*> \verbatim
*> PERM is INTEGER array, dimension ( N )
*> The permutations (from deflation and sorting) applied
*> to the two blocks.
*> \endverbatim
*>
*> \param[in] GIVPTR
*> \verbatim
*> GIVPTR is INTEGER
*> The number of Givens rotations which took place in this
*> subproblem.
*> \endverbatim
*>
*> \param[in] GIVCOL
*> \verbatim
*> GIVCOL is INTEGER array, dimension ( LDGCOL, 2 )
*> Each pair of numbers indicates a pair of rows/columns
*> involved in a Givens rotation.
*> \endverbatim
*>
*> \param[in] LDGCOL
*> \verbatim
*> LDGCOL is INTEGER
*> The leading dimension of GIVCOL, must be at least N.
*> \endverbatim
*>
*> \param[in] GIVNUM
*> \verbatim
*> GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
*> Each number indicates the C or S value used in the
*> corresponding Givens rotation.
*> \endverbatim
*>
*> \param[in] LDGNUM
*> \verbatim
*> LDGNUM is INTEGER
*> The leading dimension of arrays DIFR, POLES and
*> GIVNUM, must be at least K.
*> \endverbatim
*>
*> \param[in] POLES
*> \verbatim
*> POLES is DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
*> On entry, POLES(1:K, 1) contains the new singular
*> values obtained from solving the secular equation, and
*> POLES(1:K, 2) is an array containing the poles in the secular
*> equation.
*> \endverbatim
*>
*> \param[in] DIFL
*> \verbatim
*> DIFL is DOUBLE PRECISION array, dimension ( K ).
*> On entry, DIFL(I) is the distance between I-th updated
*> (undeflated) singular value and the I-th (undeflated) old
*> singular value.
*> \endverbatim
*>
*> \param[in] DIFR
*> \verbatim
*> DIFR is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ).
*> On entry, DIFR(I, 1) contains the distances between I-th
*> updated (undeflated) singular value and the I+1-th
*> (undeflated) old singular value. And DIFR(I, 2) is the
*> normalizing factor for the I-th right singular vector.
*> \endverbatim
*>
*> \param[in] Z
*> \verbatim
*> Z is DOUBLE PRECISION array, dimension ( K )
*> Contain the components of the deflation-adjusted updating row
*> vector.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> Contains the dimension of the non-deflated matrix,
*> This is the order of the related secular equation. 1 <= K <=N.
*> \endverbatim
*>
*> \param[in] C
*> \verbatim
*> C is DOUBLE PRECISION
*> C contains garbage if SQRE =0 and the C-value of a Givens
*> rotation related to the right null space if SQRE = 1.
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*> S is DOUBLE PRECISION
*> S contains garbage if SQRE =0 and the S-value of a Givens
*> rotation related to the right null space if SQRE = 1.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension ( K )
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2015
*
*> \ingroup doubleOTHERcomputational
*
*> \par Contributors:
* ==================
*>
*> Ming Gu and Ren-Cang Li, Computer Science Division, University of
*> California at Berkeley, USA \n
*> Osni Marques, LBNL/NERSC, USA \n
*
* =====================================================================
SUBROUTINE DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX,
$ PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
$ POLES, DIFL, DIFR, Z, K, C, S, WORK, INFO )
*
* -- LAPACK computational routine (version 3.6.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2015
*
* .. Scalar Arguments ..
INTEGER GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL,
$ LDGNUM, NL, NR, NRHS, SQRE
DOUBLE PRECISION C, S
* ..
* .. Array Arguments ..
INTEGER GIVCOL( LDGCOL, * ), PERM( * )
DOUBLE PRECISION B( LDB, * ), BX( LDBX, * ), DIFL( * ),
$ DIFR( LDGNUM, * ), GIVNUM( LDGNUM, * ),
$ POLES( LDGNUM, * ), WORK( * ), Z( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO, NEGONE
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0, NEGONE = -1.0D0 )
* ..
* .. Local Scalars ..
INTEGER I, J, M, N, NLP1
DOUBLE PRECISION DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, TEMP
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DGEMV, DLACPY, DLASCL, DROT, DSCAL,
$ XERBLA
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMC3, DNRM2
EXTERNAL DLAMC3, DNRM2
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
N = NL + NR + 1
*
IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
INFO = -1
ELSE IF( NL.LT.1 ) THEN
INFO = -2
ELSE IF( NR.LT.1 ) THEN
INFO = -3
ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
INFO = -4
ELSE IF( NRHS.LT.1 ) THEN
INFO = -5
ELSE IF( LDB.LT.N ) THEN
INFO = -7
ELSE IF( LDBX.LT.N ) THEN
INFO = -9
ELSE IF( GIVPTR.LT.0 ) THEN
INFO = -11
ELSE IF( LDGCOL.LT.N ) THEN
INFO = -13
ELSE IF( LDGNUM.LT.N ) THEN
INFO = -15
ELSE IF( K.LT.1 ) THEN
INFO = -20
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DLALS0', -INFO )
RETURN
END IF
*
M = N + SQRE
NLP1 = NL + 1
*
IF( ICOMPQ.EQ.0 ) THEN
*
* Apply back orthogonal transformations from the left.
*
* Step (1L): apply back the Givens rotations performed.
*
DO 10 I = 1, GIVPTR
CALL DROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,
$ B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),
$ GIVNUM( I, 1 ) )
10 CONTINUE
*
* Step (2L): permute rows of B.
*
CALL DCOPY( NRHS, B( NLP1, 1 ), LDB, BX( 1, 1 ), LDBX )
DO 20 I = 2, N
CALL DCOPY( NRHS, B( PERM( I ), 1 ), LDB, BX( I, 1 ), LDBX )
20 CONTINUE
*
* Step (3L): apply the inverse of the left singular vector
* matrix to BX.
*
IF( K.EQ.1 ) THEN
CALL DCOPY( NRHS, BX, LDBX, B, LDB )
IF( Z( 1 ).LT.ZERO ) THEN
CALL DSCAL( NRHS, NEGONE, B, LDB )
END IF
ELSE
DO 50 J = 1, K
DIFLJ = DIFL( J )
DJ = POLES( J, 1 )
DSIGJ = -POLES( J, 2 )
IF( J.LT.K ) THEN
DIFRJ = -DIFR( J, 1 )
DSIGJP = -POLES( J+1, 2 )
END IF
IF( ( Z( J ).EQ.ZERO ) .OR. ( POLES( J, 2 ).EQ.ZERO ) )
$ THEN
WORK( J ) = ZERO
ELSE
WORK( J ) = -POLES( J, 2 )*Z( J ) / DIFLJ /
$ ( POLES( J, 2 )+DJ )
END IF
DO 30 I = 1, J - 1
IF( ( Z( I ).EQ.ZERO ) .OR.
$ ( POLES( I, 2 ).EQ.ZERO ) ) THEN
WORK( I ) = ZERO
ELSE
WORK( I ) = POLES( I, 2 )*Z( I ) /
$ ( DLAMC3( POLES( I, 2 ), DSIGJ )-
$ DIFLJ ) / ( POLES( I, 2 )+DJ )
END IF
30 CONTINUE
DO 40 I = J + 1, K
IF( ( Z( I ).EQ.ZERO ) .OR.
$ ( POLES( I, 2 ).EQ.ZERO ) ) THEN
WORK( I ) = ZERO
ELSE
WORK( I ) = POLES( I, 2 )*Z( I ) /
$ ( DLAMC3( POLES( I, 2 ), DSIGJP )+
$ DIFRJ ) / ( POLES( I, 2 )+DJ )
END IF
40 CONTINUE
WORK( 1 ) = NEGONE
TEMP = DNRM2( K, WORK, 1 )
CALL DGEMV( 'T', K, NRHS, ONE, BX, LDBX, WORK, 1, ZERO,
$ B( J, 1 ), LDB )
CALL DLASCL( 'G', 0, 0, TEMP, ONE, 1, NRHS, B( J, 1 ),
$ LDB, INFO )
50 CONTINUE
END IF
*
* Move the deflated rows of BX to B also.
*
IF( K.LT.MAX( M, N ) )
$ CALL DLACPY( 'A', N-K, NRHS, BX( K+1, 1 ), LDBX,
$ B( K+1, 1 ), LDB )
ELSE
*
* Apply back the right orthogonal transformations.
*
* Step (1R): apply back the new right singular vector matrix
* to B.
*
IF( K.EQ.1 ) THEN
CALL DCOPY( NRHS, B, LDB, BX, LDBX )
ELSE
DO 80 J = 1, K
DSIGJ = POLES( J, 2 )
IF( Z( J ).EQ.ZERO ) THEN
WORK( J ) = ZERO
ELSE
WORK( J ) = -Z( J ) / DIFL( J ) /
$ ( DSIGJ+POLES( J, 1 ) ) / DIFR( J, 2 )
END IF
DO 60 I = 1, J - 1
IF( Z( J ).EQ.ZERO ) THEN
WORK( I ) = ZERO
ELSE
WORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, -POLES( I+1,
$ 2 ) )-DIFR( I, 1 ) ) /
$ ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
END IF
60 CONTINUE
DO 70 I = J + 1, K
IF( Z( J ).EQ.ZERO ) THEN
WORK( I ) = ZERO
ELSE
WORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, -POLES( I,
$ 2 ) )-DIFL( I ) ) /
$ ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
END IF
70 CONTINUE
CALL DGEMV( 'T', K, NRHS, ONE, B, LDB, WORK, 1, ZERO,
$ BX( J, 1 ), LDBX )
80 CONTINUE
END IF
*
* Step (2R): if SQRE = 1, apply back the rotation that is
* related to the right null space of the subproblem.
*
IF( SQRE.EQ.1 ) THEN
CALL DCOPY( NRHS, B( M, 1 ), LDB, BX( M, 1 ), LDBX )
CALL DROT( NRHS, BX( 1, 1 ), LDBX, BX( M, 1 ), LDBX, C, S )
END IF
IF( K.LT.MAX( M, N ) )
$ CALL DLACPY( 'A', N-K, NRHS, B( K+1, 1 ), LDB, BX( K+1, 1 ),
$ LDBX )
*
* Step (3R): permute rows of B.
*
CALL DCOPY( NRHS, BX( 1, 1 ), LDBX, B( NLP1, 1 ), LDB )
IF( SQRE.EQ.1 ) THEN
CALL DCOPY( NRHS, BX( M, 1 ), LDBX, B( M, 1 ), LDB )
END IF
DO 90 I = 2, N
CALL DCOPY( NRHS, BX( I, 1 ), LDBX, B( PERM( I ), 1 ), LDB )
90 CONTINUE
*
* Step (4R): apply back the Givens rotations performed.
*
DO 100 I = GIVPTR, 1, -1
CALL DROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,
$ B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),
$ -GIVNUM( I, 1 ) )
100 CONTINUE
END IF
*
RETURN
*
* End of DLALS0
*
END
|