summaryrefslogtreecommitdiff
path: root/SRC/dlaein.f
blob: 99946b84150179d31bb4259a9c356efb0e0856cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
*> \brief \b DLAEIN
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> Download DLAEIN + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaein.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaein.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaein.f"> 
*> [TXT]</a> 
*
*  Definition
*  ==========
*
*       SUBROUTINE DLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B,
*                          LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO )
* 
*       .. Scalar Arguments ..
*       LOGICAL            NOINIT, RIGHTV
*       INTEGER            INFO, LDB, LDH, N
*       DOUBLE PRECISION   BIGNUM, EPS3, SMLNUM, WI, WR
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   B( LDB, * ), H( LDH, * ), VI( * ), VR( * ),
*      $                   WORK( * )
*       ..
*  
*  Purpose
*  =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> DLAEIN uses inverse iteration to find a right or left eigenvector
*> corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg
*> matrix H.
*>
*>\endverbatim
*
*  Arguments
*  =========
*
*> \param[in] RIGHTV
*> \verbatim
*>          RIGHTV is LOGICAL
*>          = .TRUE. : compute right eigenvector;
*>          = .FALSE.: compute left eigenvector.
*> \endverbatim
*>
*> \param[in] NOINIT
*> \verbatim
*>          NOINIT is LOGICAL
*>          = .TRUE. : no initial vector supplied in (VR,VI).
*>          = .FALSE.: initial vector supplied in (VR,VI).
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix H.  N >= 0.
*> \endverbatim
*>
*> \param[in] H
*> \verbatim
*>          H is DOUBLE PRECISION array, dimension (LDH,N)
*>          The upper Hessenberg matrix H.
*> \endverbatim
*>
*> \param[in] LDH
*> \verbatim
*>          LDH is INTEGER
*>          The leading dimension of the array H.  LDH >= max(1,N).
*> \endverbatim
*>
*> \param[in] WR
*> \verbatim
*>          WR is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in] WI
*> \verbatim
*>          WI is DOUBLE PRECISION
*>          The real and imaginary parts of the eigenvalue of H whose
*>          corresponding right or left eigenvector is to be computed.
*> \endverbatim
*>
*> \param[in,out] VR
*> \verbatim
*>          VR is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[in,out] VI
*> \verbatim
*>          VI is DOUBLE PRECISION array, dimension (N)
*>          On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain
*>          a real starting vector for inverse iteration using the real
*>          eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI
*>          must contain the real and imaginary parts of a complex
*>          starting vector for inverse iteration using the complex
*>          eigenvalue (WR,WI); otherwise VR and VI need not be set.
*>          On exit, if WI = 0.0 (real eigenvalue), VR contains the
*>          computed real eigenvector; if WI.ne.0.0 (complex eigenvalue),
*>          VR and VI contain the real and imaginary parts of the
*>          computed complex eigenvector. The eigenvector is normalized
*>          so that the component of largest magnitude has magnitude 1;
*>          here the magnitude of a complex number (x,y) is taken to be
*>          |x| + |y|.
*>          VI is not referenced if WI = 0.0.
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*>          B is DOUBLE PRECISION array, dimension (LDB,N)
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= N+1.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[in] EPS3
*> \verbatim
*>          EPS3 is DOUBLE PRECISION
*>          A small machine-dependent value which is used to perturb
*>          close eigenvalues, and to replace zero pivots.
*> \endverbatim
*>
*> \param[in] SMLNUM
*> \verbatim
*>          SMLNUM is DOUBLE PRECISION
*>          A machine-dependent value close to the underflow threshold.
*> \endverbatim
*>
*> \param[in] BIGNUM
*> \verbatim
*>          BIGNUM is DOUBLE PRECISION
*>          A machine-dependent value close to the overflow threshold.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          = 1:  inverse iteration did not converge; VR is set to the
*>                last iterate, and so is VI if WI.ne.0.0.
*> \endverbatim
*>
*
*  Authors
*  =======
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup doubleOTHERauxiliary
*
*  =====================================================================
      SUBROUTINE DLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B,
     $                   LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO )
*
*  -- LAPACK auxiliary routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      LOGICAL            NOINIT, RIGHTV
      INTEGER            INFO, LDB, LDH, N
      DOUBLE PRECISION   BIGNUM, EPS3, SMLNUM, WI, WR
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   B( LDB, * ), H( LDH, * ), VI( * ), VR( * ),
     $                   WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TENTH
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TENTH = 1.0D-1 )
*     ..
*     .. Local Scalars ..
      CHARACTER          NORMIN, TRANS
      INTEGER            I, I1, I2, I3, IERR, ITS, J
      DOUBLE PRECISION   ABSBII, ABSBJJ, EI, EJ, GROWTO, NORM, NRMSML,
     $                   REC, ROOTN, SCALE, TEMP, VCRIT, VMAX, VNORM, W,
     $                   W1, X, XI, XR, Y
*     ..
*     .. External Functions ..
      INTEGER            IDAMAX
      DOUBLE PRECISION   DASUM, DLAPY2, DNRM2
      EXTERNAL           IDAMAX, DASUM, DLAPY2, DNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLADIV, DLATRS, DSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
      INFO = 0
*
*     GROWTO is the threshold used in the acceptance test for an
*     eigenvector.
*
      ROOTN = SQRT( DBLE( N ) )
      GROWTO = TENTH / ROOTN
      NRMSML = MAX( ONE, EPS3*ROOTN )*SMLNUM
*
*     Form B = H - (WR,WI)*I (except that the subdiagonal elements and
*     the imaginary parts of the diagonal elements are not stored).
*
      DO 20 J = 1, N
         DO 10 I = 1, J - 1
            B( I, J ) = H( I, J )
   10    CONTINUE
         B( J, J ) = H( J, J ) - WR
   20 CONTINUE
*
      IF( WI.EQ.ZERO ) THEN
*
*        Real eigenvalue.
*
         IF( NOINIT ) THEN
*
*           Set initial vector.
*
            DO 30 I = 1, N
               VR( I ) = EPS3
   30       CONTINUE
         ELSE
*
*           Scale supplied initial vector.
*
            VNORM = DNRM2( N, VR, 1 )
            CALL DSCAL( N, ( EPS3*ROOTN ) / MAX( VNORM, NRMSML ), VR,
     $                  1 )
         END IF
*
         IF( RIGHTV ) THEN
*
*           LU decomposition with partial pivoting of B, replacing zero
*           pivots by EPS3.
*
            DO 60 I = 1, N - 1
               EI = H( I+1, I )
               IF( ABS( B( I, I ) ).LT.ABS( EI ) ) THEN
*
*                 Interchange rows and eliminate.
*
                  X = B( I, I ) / EI
                  B( I, I ) = EI
                  DO 40 J = I + 1, N
                     TEMP = B( I+1, J )
                     B( I+1, J ) = B( I, J ) - X*TEMP
                     B( I, J ) = TEMP
   40             CONTINUE
               ELSE
*
*                 Eliminate without interchange.
*
                  IF( B( I, I ).EQ.ZERO )
     $               B( I, I ) = EPS3
                  X = EI / B( I, I )
                  IF( X.NE.ZERO ) THEN
                     DO 50 J = I + 1, N
                        B( I+1, J ) = B( I+1, J ) - X*B( I, J )
   50                CONTINUE
                  END IF
               END IF
   60       CONTINUE
            IF( B( N, N ).EQ.ZERO )
     $         B( N, N ) = EPS3
*
            TRANS = 'N'
*
         ELSE
*
*           UL decomposition with partial pivoting of B, replacing zero
*           pivots by EPS3.
*
            DO 90 J = N, 2, -1
               EJ = H( J, J-1 )
               IF( ABS( B( J, J ) ).LT.ABS( EJ ) ) THEN
*
*                 Interchange columns and eliminate.
*
                  X = B( J, J ) / EJ
                  B( J, J ) = EJ
                  DO 70 I = 1, J - 1
                     TEMP = B( I, J-1 )
                     B( I, J-1 ) = B( I, J ) - X*TEMP
                     B( I, J ) = TEMP
   70             CONTINUE
               ELSE
*
*                 Eliminate without interchange.
*
                  IF( B( J, J ).EQ.ZERO )
     $               B( J, J ) = EPS3
                  X = EJ / B( J, J )
                  IF( X.NE.ZERO ) THEN
                     DO 80 I = 1, J - 1
                        B( I, J-1 ) = B( I, J-1 ) - X*B( I, J )
   80                CONTINUE
                  END IF
               END IF
   90       CONTINUE
            IF( B( 1, 1 ).EQ.ZERO )
     $         B( 1, 1 ) = EPS3
*
            TRANS = 'T'
*
         END IF
*
         NORMIN = 'N'
         DO 110 ITS = 1, N
*
*           Solve U*x = scale*v for a right eigenvector
*             or U**T*x = scale*v for a left eigenvector,
*           overwriting x on v.
*
            CALL DLATRS( 'Upper', TRANS, 'Nonunit', NORMIN, N, B, LDB,
     $                   VR, SCALE, WORK, IERR )
            NORMIN = 'Y'
*
*           Test for sufficient growth in the norm of v.
*
            VNORM = DASUM( N, VR, 1 )
            IF( VNORM.GE.GROWTO*SCALE )
     $         GO TO 120
*
*           Choose new orthogonal starting vector and try again.
*
            TEMP = EPS3 / ( ROOTN+ONE )
            VR( 1 ) = EPS3
            DO 100 I = 2, N
               VR( I ) = TEMP
  100       CONTINUE
            VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN
  110    CONTINUE
*
*        Failure to find eigenvector in N iterations.
*
         INFO = 1
*
  120    CONTINUE
*
*        Normalize eigenvector.
*
         I = IDAMAX( N, VR, 1 )
         CALL DSCAL( N, ONE / ABS( VR( I ) ), VR, 1 )
      ELSE
*
*        Complex eigenvalue.
*
         IF( NOINIT ) THEN
*
*           Set initial vector.
*
            DO 130 I = 1, N
               VR( I ) = EPS3
               VI( I ) = ZERO
  130       CONTINUE
         ELSE
*
*           Scale supplied initial vector.
*
            NORM = DLAPY2( DNRM2( N, VR, 1 ), DNRM2( N, VI, 1 ) )
            REC = ( EPS3*ROOTN ) / MAX( NORM, NRMSML )
            CALL DSCAL( N, REC, VR, 1 )
            CALL DSCAL( N, REC, VI, 1 )
         END IF
*
         IF( RIGHTV ) THEN
*
*           LU decomposition with partial pivoting of B, replacing zero
*           pivots by EPS3.
*
*           The imaginary part of the (i,j)-th element of U is stored in
*           B(j+1,i).
*
            B( 2, 1 ) = -WI
            DO 140 I = 2, N
               B( I+1, 1 ) = ZERO
  140       CONTINUE
*
            DO 170 I = 1, N - 1
               ABSBII = DLAPY2( B( I, I ), B( I+1, I ) )
               EI = H( I+1, I )
               IF( ABSBII.LT.ABS( EI ) ) THEN
*
*                 Interchange rows and eliminate.
*
                  XR = B( I, I ) / EI
                  XI = B( I+1, I ) / EI
                  B( I, I ) = EI
                  B( I+1, I ) = ZERO
                  DO 150 J = I + 1, N
                     TEMP = B( I+1, J )
                     B( I+1, J ) = B( I, J ) - XR*TEMP
                     B( J+1, I+1 ) = B( J+1, I ) - XI*TEMP
                     B( I, J ) = TEMP
                     B( J+1, I ) = ZERO
  150             CONTINUE
                  B( I+2, I ) = -WI
                  B( I+1, I+1 ) = B( I+1, I+1 ) - XI*WI
                  B( I+2, I+1 ) = B( I+2, I+1 ) + XR*WI
               ELSE
*
*                 Eliminate without interchanging rows.
*
                  IF( ABSBII.EQ.ZERO ) THEN
                     B( I, I ) = EPS3
                     B( I+1, I ) = ZERO
                     ABSBII = EPS3
                  END IF
                  EI = ( EI / ABSBII ) / ABSBII
                  XR = B( I, I )*EI
                  XI = -B( I+1, I )*EI
                  DO 160 J = I + 1, N
                     B( I+1, J ) = B( I+1, J ) - XR*B( I, J ) +
     $                             XI*B( J+1, I )
                     B( J+1, I+1 ) = -XR*B( J+1, I ) - XI*B( I, J )
  160             CONTINUE
                  B( I+2, I+1 ) = B( I+2, I+1 ) - WI
               END IF
*
*              Compute 1-norm of offdiagonal elements of i-th row.
*
               WORK( I ) = DASUM( N-I, B( I, I+1 ), LDB ) +
     $                     DASUM( N-I, B( I+2, I ), 1 )
  170       CONTINUE
            IF( B( N, N ).EQ.ZERO .AND. B( N+1, N ).EQ.ZERO )
     $         B( N, N ) = EPS3
            WORK( N ) = ZERO
*
            I1 = N
            I2 = 1
            I3 = -1
         ELSE
*
*           UL decomposition with partial pivoting of conjg(B),
*           replacing zero pivots by EPS3.
*
*           The imaginary part of the (i,j)-th element of U is stored in
*           B(j+1,i).
*
            B( N+1, N ) = WI
            DO 180 J = 1, N - 1
               B( N+1, J ) = ZERO
  180       CONTINUE
*
            DO 210 J = N, 2, -1
               EJ = H( J, J-1 )
               ABSBJJ = DLAPY2( B( J, J ), B( J+1, J ) )
               IF( ABSBJJ.LT.ABS( EJ ) ) THEN
*
*                 Interchange columns and eliminate
*
                  XR = B( J, J ) / EJ
                  XI = B( J+1, J ) / EJ
                  B( J, J ) = EJ
                  B( J+1, J ) = ZERO
                  DO 190 I = 1, J - 1
                     TEMP = B( I, J-1 )
                     B( I, J-1 ) = B( I, J ) - XR*TEMP
                     B( J, I ) = B( J+1, I ) - XI*TEMP
                     B( I, J ) = TEMP
                     B( J+1, I ) = ZERO
  190             CONTINUE
                  B( J+1, J-1 ) = WI
                  B( J-1, J-1 ) = B( J-1, J-1 ) + XI*WI
                  B( J, J-1 ) = B( J, J-1 ) - XR*WI
               ELSE
*
*                 Eliminate without interchange.
*
                  IF( ABSBJJ.EQ.ZERO ) THEN
                     B( J, J ) = EPS3
                     B( J+1, J ) = ZERO
                     ABSBJJ = EPS3
                  END IF
                  EJ = ( EJ / ABSBJJ ) / ABSBJJ
                  XR = B( J, J )*EJ
                  XI = -B( J+1, J )*EJ
                  DO 200 I = 1, J - 1
                     B( I, J-1 ) = B( I, J-1 ) - XR*B( I, J ) +
     $                             XI*B( J+1, I )
                     B( J, I ) = -XR*B( J+1, I ) - XI*B( I, J )
  200             CONTINUE
                  B( J, J-1 ) = B( J, J-1 ) + WI
               END IF
*
*              Compute 1-norm of offdiagonal elements of j-th column.
*
               WORK( J ) = DASUM( J-1, B( 1, J ), 1 ) +
     $                     DASUM( J-1, B( J+1, 1 ), LDB )
  210       CONTINUE
            IF( B( 1, 1 ).EQ.ZERO .AND. B( 2, 1 ).EQ.ZERO )
     $         B( 1, 1 ) = EPS3
            WORK( 1 ) = ZERO
*
            I1 = 1
            I2 = N
            I3 = 1
         END IF
*
         DO 270 ITS = 1, N
            SCALE = ONE
            VMAX = ONE
            VCRIT = BIGNUM
*
*           Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector,
*             or U**T*(xr,xi) = scale*(vr,vi) for a left eigenvector,
*           overwriting (xr,xi) on (vr,vi).
*
            DO 250 I = I1, I2, I3
*
               IF( WORK( I ).GT.VCRIT ) THEN
                  REC = ONE / VMAX
                  CALL DSCAL( N, REC, VR, 1 )
                  CALL DSCAL( N, REC, VI, 1 )
                  SCALE = SCALE*REC
                  VMAX = ONE
                  VCRIT = BIGNUM
               END IF
*
               XR = VR( I )
               XI = VI( I )
               IF( RIGHTV ) THEN
                  DO 220 J = I + 1, N
                     XR = XR - B( I, J )*VR( J ) + B( J+1, I )*VI( J )
                     XI = XI - B( I, J )*VI( J ) - B( J+1, I )*VR( J )
  220             CONTINUE
               ELSE
                  DO 230 J = 1, I - 1
                     XR = XR - B( J, I )*VR( J ) + B( I+1, J )*VI( J )
                     XI = XI - B( J, I )*VI( J ) - B( I+1, J )*VR( J )
  230             CONTINUE
               END IF
*
               W = ABS( B( I, I ) ) + ABS( B( I+1, I ) )
               IF( W.GT.SMLNUM ) THEN
                  IF( W.LT.ONE ) THEN
                     W1 = ABS( XR ) + ABS( XI )
                     IF( W1.GT.W*BIGNUM ) THEN
                        REC = ONE / W1
                        CALL DSCAL( N, REC, VR, 1 )
                        CALL DSCAL( N, REC, VI, 1 )
                        XR = VR( I )
                        XI = VI( I )
                        SCALE = SCALE*REC
                        VMAX = VMAX*REC
                     END IF
                  END IF
*
*                 Divide by diagonal element of B.
*
                  CALL DLADIV( XR, XI, B( I, I ), B( I+1, I ), VR( I ),
     $                         VI( I ) )
                  VMAX = MAX( ABS( VR( I ) )+ABS( VI( I ) ), VMAX )
                  VCRIT = BIGNUM / VMAX
               ELSE
                  DO 240 J = 1, N
                     VR( J ) = ZERO
                     VI( J ) = ZERO
  240             CONTINUE
                  VR( I ) = ONE
                  VI( I ) = ONE
                  SCALE = ZERO
                  VMAX = ONE
                  VCRIT = BIGNUM
               END IF
  250       CONTINUE
*
*           Test for sufficient growth in the norm of (VR,VI).
*
            VNORM = DASUM( N, VR, 1 ) + DASUM( N, VI, 1 )
            IF( VNORM.GE.GROWTO*SCALE )
     $         GO TO 280
*
*           Choose a new orthogonal starting vector and try again.
*
            Y = EPS3 / ( ROOTN+ONE )
            VR( 1 ) = EPS3
            VI( 1 ) = ZERO
*
            DO 260 I = 2, N
               VR( I ) = Y
               VI( I ) = ZERO
  260       CONTINUE
            VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN
  270    CONTINUE
*
*        Failure to find eigenvector in N iterations
*
         INFO = 1
*
  280    CONTINUE
*
*        Normalize eigenvector.
*
         VNORM = ZERO
         DO 290 I = 1, N
            VNORM = MAX( VNORM, ABS( VR( I ) )+ABS( VI( I ) ) )
  290    CONTINUE
         CALL DSCAL( N, ONE / VNORM, VR, 1 )
         CALL DSCAL( N, ONE / VNORM, VI, 1 )
*
      END IF
*
      RETURN
*
*     End of DLAEIN
*
      END