1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
|
*> \brief \b DLAED6 used by sstedc. Computes one Newton step in solution of the secular equation.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLAED6 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed6.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed6.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed6.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO )
*
* .. Scalar Arguments ..
* LOGICAL ORGATI
* INTEGER INFO, KNITER
* DOUBLE PRECISION FINIT, RHO, TAU
* ..
* .. Array Arguments ..
* DOUBLE PRECISION D( 3 ), Z( 3 )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLAED6 computes the positive or negative root (closest to the origin)
*> of
*> z(1) z(2) z(3)
*> f(x) = rho + --------- + ---------- + ---------
*> d(1)-x d(2)-x d(3)-x
*>
*> It is assumed that
*>
*> if ORGATI = .true. the root is between d(2) and d(3);
*> otherwise it is between d(1) and d(2)
*>
*> This routine will be called by DLAED4 when necessary. In most cases,
*> the root sought is the smallest in magnitude, though it might not be
*> in some extremely rare situations.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] KNITER
*> \verbatim
*> KNITER is INTEGER
*> Refer to DLAED4 for its significance.
*> \endverbatim
*>
*> \param[in] ORGATI
*> \verbatim
*> ORGATI is LOGICAL
*> If ORGATI is true, the needed root is between d(2) and
*> d(3); otherwise it is between d(1) and d(2). See
*> DLAED4 for further details.
*> \endverbatim
*>
*> \param[in] RHO
*> \verbatim
*> RHO is DOUBLE PRECISION
*> Refer to the equation f(x) above.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (3)
*> D satisfies d(1) < d(2) < d(3).
*> \endverbatim
*>
*> \param[in] Z
*> \verbatim
*> Z is DOUBLE PRECISION array, dimension (3)
*> Each of the elements in z must be positive.
*> \endverbatim
*>
*> \param[in] FINIT
*> \verbatim
*> FINIT is DOUBLE PRECISION
*> The value of f at 0. It is more accurate than the one
*> evaluated inside this routine (if someone wants to do
*> so).
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*> TAU is DOUBLE PRECISION
*> The root of the equation f(x).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> > 0: if INFO = 1, failure to converge
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup auxOTHERcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> 10/02/03: This version has a few statements commented out for thread
*> safety (machine parameters are computed on each entry). SJH.
*>
*> 05/10/06: Modified from a new version of Ren-Cang Li, use
*> Gragg-Thornton-Warner cubic convergent scheme for better stability.
*> \endverbatim
*
*> \par Contributors:
* ==================
*>
*> Ren-Cang Li, Computer Science Division, University of California
*> at Berkeley, USA
*>
* =====================================================================
SUBROUTINE DLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO )
*
* -- LAPACK computational routine (version 3.4.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* .. Scalar Arguments ..
LOGICAL ORGATI
INTEGER INFO, KNITER
DOUBLE PRECISION FINIT, RHO, TAU
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( 3 ), Z( 3 )
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER MAXIT
PARAMETER ( MAXIT = 40 )
DOUBLE PRECISION ZERO, ONE, TWO, THREE, FOUR, EIGHT
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ THREE = 3.0D0, FOUR = 4.0D0, EIGHT = 8.0D0 )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. Local Arrays ..
DOUBLE PRECISION DSCALE( 3 ), ZSCALE( 3 )
* ..
* .. Local Scalars ..
LOGICAL SCALE
INTEGER I, ITER, NITER
DOUBLE PRECISION A, B, BASE, C, DDF, DF, EPS, ERRETM, ETA, F,
$ FC, SCLFAC, SCLINV, SMALL1, SMALL2, SMINV1,
$ SMINV2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,
$ LBD, UBD
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, INT, LOG, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
INFO = 0
*
IF( ORGATI ) THEN
LBD = D(2)
UBD = D(3)
ELSE
LBD = D(1)
UBD = D(2)
END IF
IF( FINIT .LT. ZERO )THEN
LBD = ZERO
ELSE
UBD = ZERO
END IF
*
NITER = 1
TAU = ZERO
IF( KNITER.EQ.2 ) THEN
IF( ORGATI ) THEN
TEMP = ( D( 3 )-D( 2 ) ) / TWO
C = RHO + Z( 1 ) / ( ( D( 1 )-D( 2 ) )-TEMP )
A = C*( D( 2 )+D( 3 ) ) + Z( 2 ) + Z( 3 )
B = C*D( 2 )*D( 3 ) + Z( 2 )*D( 3 ) + Z( 3 )*D( 2 )
ELSE
TEMP = ( D( 1 )-D( 2 ) ) / TWO
C = RHO + Z( 3 ) / ( ( D( 3 )-D( 2 ) )-TEMP )
A = C*( D( 1 )+D( 2 ) ) + Z( 1 ) + Z( 2 )
B = C*D( 1 )*D( 2 ) + Z( 1 )*D( 2 ) + Z( 2 )*D( 1 )
END IF
TEMP = MAX( ABS( A ), ABS( B ), ABS( C ) )
A = A / TEMP
B = B / TEMP
C = C / TEMP
IF( C.EQ.ZERO ) THEN
TAU = B / A
ELSE IF( A.LE.ZERO ) THEN
TAU = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
ELSE
TAU = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
END IF
IF( TAU .LT. LBD .OR. TAU .GT. UBD )
$ TAU = ( LBD+UBD )/TWO
IF( D(1).EQ.TAU .OR. D(2).EQ.TAU .OR. D(3).EQ.TAU ) THEN
TAU = ZERO
ELSE
TEMP = FINIT + TAU*Z(1)/( D(1)*( D( 1 )-TAU ) ) +
$ TAU*Z(2)/( D(2)*( D( 2 )-TAU ) ) +
$ TAU*Z(3)/( D(3)*( D( 3 )-TAU ) )
IF( TEMP .LE. ZERO )THEN
LBD = TAU
ELSE
UBD = TAU
END IF
IF( ABS( FINIT ).LE.ABS( TEMP ) )
$ TAU = ZERO
END IF
END IF
*
* get machine parameters for possible scaling to avoid overflow
*
* modified by Sven: parameters SMALL1, SMINV1, SMALL2,
* SMINV2, EPS are not SAVEd anymore between one call to the
* others but recomputed at each call
*
EPS = DLAMCH( 'Epsilon' )
BASE = DLAMCH( 'Base' )
SMALL1 = BASE**( INT( LOG( DLAMCH( 'SafMin' ) ) / LOG( BASE ) /
$ THREE ) )
SMINV1 = ONE / SMALL1
SMALL2 = SMALL1*SMALL1
SMINV2 = SMINV1*SMINV1
*
* Determine if scaling of inputs necessary to avoid overflow
* when computing 1/TEMP**3
*
IF( ORGATI ) THEN
TEMP = MIN( ABS( D( 2 )-TAU ), ABS( D( 3 )-TAU ) )
ELSE
TEMP = MIN( ABS( D( 1 )-TAU ), ABS( D( 2 )-TAU ) )
END IF
SCALE = .FALSE.
IF( TEMP.LE.SMALL1 ) THEN
SCALE = .TRUE.
IF( TEMP.LE.SMALL2 ) THEN
*
* Scale up by power of radix nearest 1/SAFMIN**(2/3)
*
SCLFAC = SMINV2
SCLINV = SMALL2
ELSE
*
* Scale up by power of radix nearest 1/SAFMIN**(1/3)
*
SCLFAC = SMINV1
SCLINV = SMALL1
END IF
*
* Scaling up safe because D, Z, TAU scaled elsewhere to be O(1)
*
DO 10 I = 1, 3
DSCALE( I ) = D( I )*SCLFAC
ZSCALE( I ) = Z( I )*SCLFAC
10 CONTINUE
TAU = TAU*SCLFAC
LBD = LBD*SCLFAC
UBD = UBD*SCLFAC
ELSE
*
* Copy D and Z to DSCALE and ZSCALE
*
DO 20 I = 1, 3
DSCALE( I ) = D( I )
ZSCALE( I ) = Z( I )
20 CONTINUE
END IF
*
FC = ZERO
DF = ZERO
DDF = ZERO
DO 30 I = 1, 3
TEMP = ONE / ( DSCALE( I )-TAU )
TEMP1 = ZSCALE( I )*TEMP
TEMP2 = TEMP1*TEMP
TEMP3 = TEMP2*TEMP
FC = FC + TEMP1 / DSCALE( I )
DF = DF + TEMP2
DDF = DDF + TEMP3
30 CONTINUE
F = FINIT + TAU*FC
*
IF( ABS( F ).LE.ZERO )
$ GO TO 60
IF( F .LE. ZERO )THEN
LBD = TAU
ELSE
UBD = TAU
END IF
*
* Iteration begins -- Use Gragg-Thornton-Warner cubic convergent
* scheme
*
* It is not hard to see that
*
* 1) Iterations will go up monotonically
* if FINIT < 0;
*
* 2) Iterations will go down monotonically
* if FINIT > 0.
*
ITER = NITER + 1
*
DO 50 NITER = ITER, MAXIT
*
IF( ORGATI ) THEN
TEMP1 = DSCALE( 2 ) - TAU
TEMP2 = DSCALE( 3 ) - TAU
ELSE
TEMP1 = DSCALE( 1 ) - TAU
TEMP2 = DSCALE( 2 ) - TAU
END IF
A = ( TEMP1+TEMP2 )*F - TEMP1*TEMP2*DF
B = TEMP1*TEMP2*F
C = F - ( TEMP1+TEMP2 )*DF + TEMP1*TEMP2*DDF
TEMP = MAX( ABS( A ), ABS( B ), ABS( C ) )
A = A / TEMP
B = B / TEMP
C = C / TEMP
IF( C.EQ.ZERO ) THEN
ETA = B / A
ELSE IF( A.LE.ZERO ) THEN
ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
ELSE
ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
END IF
IF( F*ETA.GE.ZERO ) THEN
ETA = -F / DF
END IF
*
TAU = TAU + ETA
IF( TAU .LT. LBD .OR. TAU .GT. UBD )
$ TAU = ( LBD + UBD )/TWO
*
FC = ZERO
ERRETM = ZERO
DF = ZERO
DDF = ZERO
DO 40 I = 1, 3
IF ( ( DSCALE( I )-TAU ).NE.ZERO ) THEN
TEMP = ONE / ( DSCALE( I )-TAU )
TEMP1 = ZSCALE( I )*TEMP
TEMP2 = TEMP1*TEMP
TEMP3 = TEMP2*TEMP
TEMP4 = TEMP1 / DSCALE( I )
FC = FC + TEMP4
ERRETM = ERRETM + ABS( TEMP4 )
DF = DF + TEMP2
DDF = DDF + TEMP3
ELSE
GO TO 60
END IF
40 CONTINUE
F = FINIT + TAU*FC
ERRETM = EIGHT*( ABS( FINIT )+ABS( TAU )*ERRETM ) +
$ ABS( TAU )*DF
IF( ABS( F ).LE.EPS*ERRETM )
$ GO TO 60
IF( F .LE. ZERO )THEN
LBD = TAU
ELSE
UBD = TAU
END IF
50 CONTINUE
INFO = 1
60 CONTINUE
*
* Undo scaling
*
IF( SCALE )
$ TAU = TAU*SCLINV
RETURN
*
* End of DLAED6
*
END
|