1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
*> \brief \b DLAED1 used by sstedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is tridiagonal.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLAED1 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed1.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed1.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed1.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK,
* INFO )
*
* .. Scalar Arguments ..
* INTEGER CUTPNT, INFO, LDQ, N
* DOUBLE PRECISION RHO
* ..
* .. Array Arguments ..
* INTEGER INDXQ( * ), IWORK( * )
* DOUBLE PRECISION D( * ), Q( LDQ, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLAED1 computes the updated eigensystem of a diagonal
*> matrix after modification by a rank-one symmetric matrix. This
*> routine is used only for the eigenproblem which requires all
*> eigenvalues and eigenvectors of a tridiagonal matrix. DLAED7 handles
*> the case in which eigenvalues only or eigenvalues and eigenvectors
*> of a full symmetric matrix (which was reduced to tridiagonal form)
*> are desired.
*>
*> T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out)
*>
*> where Z = Q**T*u, u is a vector of length N with ones in the
*> CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
*>
*> The eigenvectors of the original matrix are stored in Q, and the
*> eigenvalues are in D. The algorithm consists of three stages:
*>
*> The first stage consists of deflating the size of the problem
*> when there are multiple eigenvalues or if there is a zero in
*> the Z vector. For each such occurrence the dimension of the
*> secular equation problem is reduced by one. This stage is
*> performed by the routine DLAED2.
*>
*> The second stage consists of calculating the updated
*> eigenvalues. This is done by finding the roots of the secular
*> equation via the routine DLAED4 (as called by DLAED3).
*> This routine also calculates the eigenvectors of the current
*> problem.
*>
*> The final stage consists of computing the updated eigenvectors
*> directly using the updated eigenvalues. The eigenvectors for
*> the current problem are multiplied with the eigenvectors from
*> the overall problem.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The dimension of the symmetric tridiagonal matrix. N >= 0.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> On entry, the eigenvalues of the rank-1-perturbed matrix.
*> On exit, the eigenvalues of the repaired matrix.
*> \endverbatim
*>
*> \param[in,out] Q
*> \verbatim
*> Q is DOUBLE PRECISION array, dimension (LDQ,N)
*> On entry, the eigenvectors of the rank-1-perturbed matrix.
*> On exit, the eigenvectors of the repaired tridiagonal matrix.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> The leading dimension of the array Q. LDQ >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] INDXQ
*> \verbatim
*> INDXQ is INTEGER array, dimension (N)
*> On entry, the permutation which separately sorts the two
*> subproblems in D into ascending order.
*> On exit, the permutation which will reintegrate the
*> subproblems back into sorted order,
*> i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
*> \endverbatim
*>
*> \param[in] RHO
*> \verbatim
*> RHO is DOUBLE PRECISION
*> The subdiagonal entry used to create the rank-1 modification.
*> \endverbatim
*>
*> \param[in] CUTPNT
*> \verbatim
*> CUTPNT is INTEGER
*> The location of the last eigenvalue in the leading sub-matrix.
*> min(1,N) <= CUTPNT <= N/2.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (4*N + N**2)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (4*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if INFO = 1, an eigenvalue did not converge
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup auxOTHERcomputational
*
*> \par Contributors:
* ==================
*>
*> Jeff Rutter, Computer Science Division, University of California
*> at Berkeley, USA \n
*> Modified by Francoise Tisseur, University of Tennessee
*>
* =====================================================================
SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK,
$ INFO )
*
* -- LAPACK computational routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
INTEGER CUTPNT, INFO, LDQ, N
DOUBLE PRECISION RHO
* ..
* .. Array Arguments ..
INTEGER INDXQ( * ), IWORK( * )
DOUBLE PRECISION D( * ), Q( LDQ, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER COLTYP, I, IDLMDA, INDX, INDXC, INDXP, IQ2, IS,
$ IW, IZ, K, N1, N2, ZPP1
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DLAED2, DLAED3, DLAMRG, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
*
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( MIN( 1, N / 2 ).GT.CUTPNT .OR. ( N / 2 ).LT.CUTPNT ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DLAED1', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* The following values are integer pointers which indicate
* the portion of the workspace
* used by a particular array in DLAED2 and DLAED3.
*
IZ = 1
IDLMDA = IZ + N
IW = IDLMDA + N
IQ2 = IW + N
*
INDX = 1
INDXC = INDX + N
COLTYP = INDXC + N
INDXP = COLTYP + N
*
*
* Form the z-vector which consists of the last row of Q_1 and the
* first row of Q_2.
*
CALL DCOPY( CUTPNT, Q( CUTPNT, 1 ), LDQ, WORK( IZ ), 1 )
ZPP1 = CUTPNT + 1
CALL DCOPY( N-CUTPNT, Q( ZPP1, ZPP1 ), LDQ, WORK( IZ+CUTPNT ), 1 )
*
* Deflate eigenvalues.
*
CALL DLAED2( K, N, CUTPNT, D, Q, LDQ, INDXQ, RHO, WORK( IZ ),
$ WORK( IDLMDA ), WORK( IW ), WORK( IQ2 ),
$ IWORK( INDX ), IWORK( INDXC ), IWORK( INDXP ),
$ IWORK( COLTYP ), INFO )
*
IF( INFO.NE.0 )
$ GO TO 20
*
* Solve Secular Equation.
*
IF( K.NE.0 ) THEN
IS = ( IWORK( COLTYP )+IWORK( COLTYP+1 ) )*CUTPNT +
$ ( IWORK( COLTYP+1 )+IWORK( COLTYP+2 ) )*( N-CUTPNT ) + IQ2
CALL DLAED3( K, N, CUTPNT, D, Q, LDQ, RHO, WORK( IDLMDA ),
$ WORK( IQ2 ), IWORK( INDXC ), IWORK( COLTYP ),
$ WORK( IW ), WORK( IS ), INFO )
IF( INFO.NE.0 )
$ GO TO 20
*
* Prepare the INDXQ sorting permutation.
*
N1 = K
N2 = N - K
CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )
ELSE
DO 10 I = 1, N
INDXQ( I ) = I
10 CONTINUE
END IF
*
20 CONTINUE
RETURN
*
* End of DLAED1
*
END
|