1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
|
SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
$ LDA, AF, LDAF, IPIV, COLEQU, C, B,
$ LDB, Y, LDY, BERR_OUT, N_NORMS,
$ ERRS_N, ERRS_C, RES, AYB, DY,
$ Y_TAIL, RCOND, ITHRESH, RTHRESH,
$ DZ_UB, IGNORE_CWISE, INFO )
*
* -- LAPACK routine (version 3.2) --
* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
* -- Jason Riedy of Univ. of California Berkeley. --
* -- November 2008 --
*
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley and NAG Ltd. --
*
IMPLICIT NONE
* ..
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
$ TRANS_TYPE, N_NORMS, ITHRESH
LOGICAL COLEQU, IGNORE_CWISE
DOUBLE PRECISION RTHRESH, DZ_UB
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
$ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
DOUBLE PRECISION C( * ), AYB( * ), RCOND, BERR_OUT( * ),
$ ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
CHARACTER TRANS
INTEGER CNT, I, J, X_STATE, Z_STATE, Y_PREC_STATE
DOUBLE PRECISION YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
$ DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
$ DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
$ EPS, HUGEVAL, INCR_THRESH
LOGICAL INCR_PREC
* ..
* .. Parameters ..
INTEGER UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
$ NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
$ EXTRA_Y
PARAMETER ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
$ CONV_STATE = 2, NOPROG_STATE = 3 )
PARAMETER ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
$ EXTRA_Y = 2 )
INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
INTEGER CMP_ERR_I, PIV_GROWTH_I
PARAMETER ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
$ BERR_I = 3 )
PARAMETER ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
PARAMETER ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
$ PIV_GROWTH_I = 9 )
INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
$ LA_LINRX_CWISE_I
PARAMETER ( LA_LINRX_ITREF_I = 1,
$ LA_LINRX_ITHRESH_I = 2 )
PARAMETER ( LA_LINRX_CWISE_I = 3 )
INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
$ LA_LINRX_RCOND_I
PARAMETER ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
PARAMETER ( LA_LINRX_RCOND_I = 3 )
INTEGER LA_LINRX_MAX_N_ERRS
PARAMETER ( LA_LINRX_MAX_N_ERRS = 3 )
* ..
* .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGETRS, DGEMV, BLAS_DGEMV_X,
$ BLAS_DGEMV2_X, DLA_GEAMV, DLA_WWADDW, DLAMCH,
$ CHLA_TRANSTYPE, DLA_LIN_BERR
DOUBLE PRECISION DLAMCH
CHARACTER CHLA_TRANSTYPE
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
IF ( INFO.NE.0 ) RETURN
TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
EPS = DLAMCH( 'Epsilon' )
HUGEVAL = DLAMCH( 'Overflow' )
* Force HUGEVAL to Inf
HUGEVAL = HUGEVAL * HUGEVAL
* Using HUGEVAL may lead to spurious underflows.
INCR_THRESH = DBLE( N ) * EPS
*
DO J = 1, NRHS
Y_PREC_STATE = EXTRA_RESIDUAL
IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
DO I = 1, N
Y_TAIL( I ) = 0.0D+0
END DO
END IF
DXRAT = 0.0D+0
DXRATMAX = 0.0D+0
DZRAT = 0.0D+0
DZRATMAX = 0.0D+0
FINAL_DX_X = HUGEVAL
FINAL_DZ_Z = HUGEVAL
PREVNORMDX = HUGEVAL
PREV_DZ_Z = HUGEVAL
DZ_Z = HUGEVAL
DX_X = HUGEVAL
X_STATE = WORKING_STATE
Z_STATE = UNSTABLE_STATE
INCR_PREC = .FALSE.
DO CNT = 1, ITHRESH
*
* Compute residual RES = B_s - op(A_s) * Y,
* op(A) = A, A**T, or A**H depending on TRANS (and type).
*
CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y( 1, J ), 1,
$ 1.0D+0, RES, 1 )
ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
CALL BLAS_DGEMV_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
$ Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
ELSE
CALL BLAS_DGEMV2_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
$ Y( 1, J ), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE )
END IF
! XXX: RES is no longer needed.
CALL DCOPY( N, RES, 1, DY, 1 )
CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, DY, N, INFO )
*
* Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
*
NORMX = 0.0D+0
NORMY = 0.0D+0
NORMDX = 0.0D+0
DZ_Z = 0.0D+0
YMIN = HUGEVAL
*
DO I = 1, N
YK = ABS( Y( I, J ) )
DYK = ABS( DY( I ) )
IF ( YK .NE. 0.0D+0 ) THEN
DZ_Z = MAX( DZ_Z, DYK / YK )
ELSE IF ( DYK .NE. 0.0D+0 ) THEN
DZ_Z = HUGEVAL
END IF
YMIN = MIN( YMIN, YK )
NORMY = MAX( NORMY, YK )
IF ( COLEQU ) THEN
NORMX = MAX( NORMX, YK * C( I ) )
NORMDX = MAX( NORMDX, DYK * C( I ) )
ELSE
NORMX = NORMY
NORMDX = MAX( NORMDX, DYK )
END IF
END DO
IF ( NORMX .NE. 0.0D+0 ) THEN
DX_X = NORMDX / NORMX
ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
DX_X = 0.0D+0
ELSE
DX_X = HUGEVAL
END IF
DXRAT = NORMDX / PREVNORMDX
DZRAT = DZ_Z / PREV_DZ_Z
*
* Check termination criteria
*
IF (.NOT.IGNORE_CWISE
$ .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
$ .AND. Y_PREC_STATE .LT. EXTRA_Y)
$ INCR_PREC = .TRUE.
IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
$ X_STATE = WORKING_STATE
IF ( X_STATE .EQ. WORKING_STATE ) THEN
IF ( DX_X .LE. EPS ) THEN
X_STATE = CONV_STATE
ELSE IF ( DXRAT .GT. RTHRESH ) THEN
IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
INCR_PREC = .TRUE.
ELSE
X_STATE = NOPROG_STATE
END IF
ELSE
IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
END IF
IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
END IF
IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
$ Z_STATE = WORKING_STATE
IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
$ Z_STATE = WORKING_STATE
IF ( Z_STATE .EQ. WORKING_STATE ) THEN
IF ( DZ_Z .LE. EPS ) THEN
Z_STATE = CONV_STATE
ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
Z_STATE = UNSTABLE_STATE
DZRATMAX = 0.0D+0
FINAL_DZ_Z = HUGEVAL
ELSE IF ( DZRAT .GT. RTHRESH ) THEN
IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
INCR_PREC = .TRUE.
ELSE
Z_STATE = NOPROG_STATE
END IF
ELSE
IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
END IF
IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
END IF
*
* Exit if both normwise and componentwise stopped working,
* but if componentwise is unstable, let it go at least two
* iterations.
*
IF ( X_STATE.NE.WORKING_STATE ) THEN
IF ( IGNORE_CWISE) GOTO 666
IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
$ GOTO 666
IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
END IF
IF ( INCR_PREC ) THEN
INCR_PREC = .FALSE.
Y_PREC_STATE = Y_PREC_STATE + 1
DO I = 1, N
Y_TAIL( I ) = 0.0D+0
END DO
END IF
PREVNORMDX = NORMDX
PREV_DZ_Z = DZ_Z
*
* Update soluton.
*
IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
CALL DAXPY( N, 1.0D+0, DY, 1, Y( 1, J ), 1 )
ELSE
CALL DLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
END IF
END DO
* Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT.
666 CONTINUE
*
* Set final_* when cnt hits ithresh.
*
IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
*
* Compute error bounds
*
IF (N_NORMS .GE. 1) THEN
ERRS_N( J, LA_LINRX_ERR_I ) = FINAL_DX_X / (1 - DXRATMAX)
END IF
IF ( N_NORMS .GE. 2 ) THEN
ERRS_C( J, LA_LINRX_ERR_I ) = FINAL_DZ_Z / (1 - DZRATMAX)
END IF
*
* Compute componentwise relative backward error from formula
* max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
* where abs(Z) is the componentwise absolute value of the matrix
* or vector Z.
*
* Compute residual RES = B_s - op(A_s) * Y,
* op(A) = A, A**T, or A**H depending on TRANS (and type).
*
CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0,
$ RES, 1 )
DO I = 1, N
AYB( I ) = ABS( B( I, J ) )
END DO
*
* Compute abs(op(A_s))*abs(Y) + abs(B_s).
*
CALL DLA_GEAMV ( TRANS_TYPE, N, N, 1.0D+0,
$ A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
CALL DLA_LIN_BERR ( N, N, 1, RES, AYB, BERR_OUT( J ) )
*
* End of loop for each RHS.
*
END DO
*
RETURN
END
|