summaryrefslogtreecommitdiff
path: root/SRC/dhsein.f
blob: e71cdc87e1ab432ee23739ad43827b48161f81db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
*> \brief \b DHSEIN
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DHSEIN + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dhsein.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dhsein.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dhsein.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI,
*                          VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL,
*                          IFAILR, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          EIGSRC, INITV, SIDE
*       INTEGER            INFO, LDH, LDVL, LDVR, M, MM, N
*       ..
*       .. Array Arguments ..
*       LOGICAL            SELECT( * )
*       INTEGER            IFAILL( * ), IFAILR( * )
*       DOUBLE PRECISION   H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
*      $                   WI( * ), WORK( * ), WR( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DHSEIN uses inverse iteration to find specified right and/or left
*> eigenvectors of a real upper Hessenberg matrix H.
*>
*> The right eigenvector x and the left eigenvector y of the matrix H
*> corresponding to an eigenvalue w are defined by:
*>
*>              H * x = w * x,     y**h * H = w * y**h
*>
*> where y**h denotes the conjugate transpose of the vector y.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] SIDE
*> \verbatim
*>          SIDE is CHARACTER*1
*>          = 'R': compute right eigenvectors only;
*>          = 'L': compute left eigenvectors only;
*>          = 'B': compute both right and left eigenvectors.
*> \endverbatim
*>
*> \param[in] EIGSRC
*> \verbatim
*>          EIGSRC is CHARACTER*1
*>          Specifies the source of eigenvalues supplied in (WR,WI):
*>          = 'Q': the eigenvalues were found using DHSEQR; thus, if
*>                 H has zero subdiagonal elements, and so is
*>                 block-triangular, then the j-th eigenvalue can be
*>                 assumed to be an eigenvalue of the block containing
*>                 the j-th row/column.  This property allows DHSEIN to
*>                 perform inverse iteration on just one diagonal block.
*>          = 'N': no assumptions are made on the correspondence
*>                 between eigenvalues and diagonal blocks.  In this
*>                 case, DHSEIN must always perform inverse iteration
*>                 using the whole matrix H.
*> \endverbatim
*>
*> \param[in] INITV
*> \verbatim
*>          INITV is CHARACTER*1
*>          = 'N': no initial vectors are supplied;
*>          = 'U': user-supplied initial vectors are stored in the arrays
*>                 VL and/or VR.
*> \endverbatim
*>
*> \param[in,out] SELECT
*> \verbatim
*>          SELECT is LOGICAL array, dimension (N)
*>          Specifies the eigenvectors to be computed. To select the
*>          real eigenvector corresponding to a real eigenvalue WR(j),
*>          SELECT(j) must be set to .TRUE.. To select the complex
*>          eigenvector corresponding to a complex eigenvalue
*>          (WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)),
*>          either SELECT(j) or SELECT(j+1) or both must be set to
*>          .TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is
*>          .FALSE..
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix H.  N >= 0.
*> \endverbatim
*>
*> \param[in] H
*> \verbatim
*>          H is DOUBLE PRECISION array, dimension (LDH,N)
*>          The upper Hessenberg matrix H.
*>          If a NaN is detected in H, the routine will return with INFO=-6.
*> \endverbatim
*>
*> \param[in] LDH
*> \verbatim
*>          LDH is INTEGER
*>          The leading dimension of the array H.  LDH >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] WR
*> \verbatim
*>          WR is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[in] WI
*> \verbatim
*>          WI is DOUBLE PRECISION array, dimension (N)
*>
*>          On entry, the real and imaginary parts of the eigenvalues of
*>          H; a complex conjugate pair of eigenvalues must be stored in
*>          consecutive elements of WR and WI.
*>          On exit, WR may have been altered since close eigenvalues
*>          are perturbed slightly in searching for independent
*>          eigenvectors.
*> \endverbatim
*>
*> \param[in,out] VL
*> \verbatim
*>          VL is DOUBLE PRECISION array, dimension (LDVL,MM)
*>          On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
*>          contain starting vectors for the inverse iteration for the
*>          left eigenvectors; the starting vector for each eigenvector
*>          must be in the same column(s) in which the eigenvector will
*>          be stored.
*>          On exit, if SIDE = 'L' or 'B', the left eigenvectors
*>          specified by SELECT will be stored consecutively in the
*>          columns of VL, in the same order as their eigenvalues. A
*>          complex eigenvector corresponding to a complex eigenvalue is
*>          stored in two consecutive columns, the first holding the real
*>          part and the second the imaginary part.
*>          If SIDE = 'R', VL is not referenced.
*> \endverbatim
*>
*> \param[in] LDVL
*> \verbatim
*>          LDVL is INTEGER
*>          The leading dimension of the array VL.
*>          LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
*> \endverbatim
*>
*> \param[in,out] VR
*> \verbatim
*>          VR is DOUBLE PRECISION array, dimension (LDVR,MM)
*>          On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
*>          contain starting vectors for the inverse iteration for the
*>          right eigenvectors; the starting vector for each eigenvector
*>          must be in the same column(s) in which the eigenvector will
*>          be stored.
*>          On exit, if SIDE = 'R' or 'B', the right eigenvectors
*>          specified by SELECT will be stored consecutively in the
*>          columns of VR, in the same order as their eigenvalues. A
*>          complex eigenvector corresponding to a complex eigenvalue is
*>          stored in two consecutive columns, the first holding the real
*>          part and the second the imaginary part.
*>          If SIDE = 'L', VR is not referenced.
*> \endverbatim
*>
*> \param[in] LDVR
*> \verbatim
*>          LDVR is INTEGER
*>          The leading dimension of the array VR.
*>          LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
*> \endverbatim
*>
*> \param[in] MM
*> \verbatim
*>          MM is INTEGER
*>          The number of columns in the arrays VL and/or VR. MM >= M.
*> \endverbatim
*>
*> \param[out] M
*> \verbatim
*>          M is INTEGER
*>          The number of columns in the arrays VL and/or VR required to
*>          store the eigenvectors; each selected real eigenvector
*>          occupies one column and each selected complex eigenvector
*>          occupies two columns.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension ((N+2)*N)
*> \endverbatim
*>
*> \param[out] IFAILL
*> \verbatim
*>          IFAILL is INTEGER array, dimension (MM)
*>          If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
*>          eigenvector in the i-th column of VL (corresponding to the
*>          eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
*>          eigenvector converged satisfactorily. If the i-th and (i+1)th
*>          columns of VL hold a complex eigenvector, then IFAILL(i) and
*>          IFAILL(i+1) are set to the same value.
*>          If SIDE = 'R', IFAILL is not referenced.
*> \endverbatim
*>
*> \param[out] IFAILR
*> \verbatim
*>          IFAILR is INTEGER array, dimension (MM)
*>          If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
*>          eigenvector in the i-th column of VR (corresponding to the
*>          eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
*>          eigenvector converged satisfactorily. If the i-th and (i+1)th
*>          columns of VR hold a complex eigenvector, then IFAILR(i) and
*>          IFAILR(i+1) are set to the same value.
*>          If SIDE = 'L', IFAILR is not referenced.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, i is the number of eigenvectors which
*>                failed to converge; see IFAILL and IFAILR for further
*>                details.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup doubleOTHERcomputational
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  Each eigenvector is normalized so that the element of largest
*>  magnitude has magnitude 1; here the magnitude of a complex number
*>  (x,y) is taken to be |x|+|y|.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE DHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI,
     $                   VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL,
     $                   IFAILR, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          EIGSRC, INITV, SIDE
      INTEGER            INFO, LDH, LDVL, LDVR, M, MM, N
*     ..
*     .. Array Arguments ..
      LOGICAL            SELECT( * )
      INTEGER            IFAILL( * ), IFAILR( * )
      DOUBLE PRECISION   H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
     $                   WI( * ), WORK( * ), WR( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            BOTHV, FROMQR, LEFTV, NOINIT, PAIR, RIGHTV
      INTEGER            I, IINFO, K, KL, KLN, KR, KSI, KSR, LDWORK
      DOUBLE PRECISION   BIGNUM, EPS3, HNORM, SMLNUM, ULP, UNFL, WKI,
     $                   WKR
*     ..
*     .. External Functions ..
      LOGICAL            LSAME, DISNAN
      DOUBLE PRECISION   DLAMCH, DLANHS
      EXTERNAL           LSAME, DLAMCH, DLANHS, DISNAN
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLAEIN, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Executable Statements ..
*
*     Decode and test the input parameters.
*
      BOTHV = LSAME( SIDE, 'B' )
      RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
      LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
*
      FROMQR = LSAME( EIGSRC, 'Q' )
*
      NOINIT = LSAME( INITV, 'N' )
*
*     Set M to the number of columns required to store the selected
*     eigenvectors, and standardize the array SELECT.
*
      M = 0
      PAIR = .FALSE.
      DO 10 K = 1, N
         IF( PAIR ) THEN
            PAIR = .FALSE.
            SELECT( K ) = .FALSE.
         ELSE
            IF( WI( K ).EQ.ZERO ) THEN
               IF( SELECT( K ) )
     $            M = M + 1
            ELSE
               PAIR = .TRUE.
               IF( SELECT( K ) .OR. SELECT( K+1 ) ) THEN
                  SELECT( K ) = .TRUE.
                  M = M + 2
               END IF
            END IF
         END IF
   10 CONTINUE
*
      INFO = 0
      IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
         INFO = -1
      ELSE IF( .NOT.FROMQR .AND. .NOT.LSAME( EIGSRC, 'N' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.NOINIT .AND. .NOT.LSAME( INITV, 'U' ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
         INFO = -11
      ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
         INFO = -13
      ELSE IF( MM.LT.M ) THEN
         INFO = -14
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DHSEIN', -INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Set machine-dependent constants.
*
      UNFL = DLAMCH( 'Safe minimum' )
      ULP = DLAMCH( 'Precision' )
      SMLNUM = UNFL*( N / ULP )
      BIGNUM = ( ONE-ULP ) / SMLNUM
*
      LDWORK = N + 1
*
      KL = 1
      KLN = 0
      IF( FROMQR ) THEN
         KR = 0
      ELSE
         KR = N
      END IF
      KSR = 1
*
      DO 120 K = 1, N
         IF( SELECT( K ) ) THEN
*
*           Compute eigenvector(s) corresponding to W(K).
*
            IF( FROMQR ) THEN
*
*              If affiliation of eigenvalues is known, check whether
*              the matrix splits.
*
*              Determine KL and KR such that 1 <= KL <= K <= KR <= N
*              and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or
*              KR = N).
*
*              Then inverse iteration can be performed with the
*              submatrix H(KL:N,KL:N) for a left eigenvector, and with
*              the submatrix H(1:KR,1:KR) for a right eigenvector.
*
               DO 20 I = K, KL + 1, -1
                  IF( H( I, I-1 ).EQ.ZERO )
     $               GO TO 30
   20          CONTINUE
   30          CONTINUE
               KL = I
               IF( K.GT.KR ) THEN
                  DO 40 I = K, N - 1
                     IF( H( I+1, I ).EQ.ZERO )
     $                  GO TO 50
   40             CONTINUE
   50             CONTINUE
                  KR = I
               END IF
            END IF
*
            IF( KL.NE.KLN ) THEN
               KLN = KL
*
*              Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it
*              has not ben computed before.
*
               HNORM = DLANHS( 'I', KR-KL+1, H( KL, KL ), LDH, WORK )
               IF( DISNAN( HNORM ) ) THEN
                  INFO = -6
                  RETURN
               ELSE IF( HNORM.GT.ZERO ) THEN
                  EPS3 = HNORM*ULP
               ELSE
                  EPS3 = SMLNUM
               END IF
            END IF
*
*           Perturb eigenvalue if it is close to any previous
*           selected eigenvalues affiliated to the submatrix
*           H(KL:KR,KL:KR). Close roots are modified by EPS3.
*
            WKR = WR( K )
            WKI = WI( K )
   60       CONTINUE
            DO 70 I = K - 1, KL, -1
               IF( SELECT( I ) .AND. ABS( WR( I )-WKR )+
     $             ABS( WI( I )-WKI ).LT.EPS3 ) THEN
                  WKR = WKR + EPS3
                  GO TO 60
               END IF
   70       CONTINUE
            WR( K ) = WKR
*
            PAIR = WKI.NE.ZERO
            IF( PAIR ) THEN
               KSI = KSR + 1
            ELSE
               KSI = KSR
            END IF
            IF( LEFTV ) THEN
*
*              Compute left eigenvector.
*
               CALL DLAEIN( .FALSE., NOINIT, N-KL+1, H( KL, KL ), LDH,
     $                      WKR, WKI, VL( KL, KSR ), VL( KL, KSI ),
     $                      WORK, LDWORK, WORK( N*N+N+1 ), EPS3, SMLNUM,
     $                      BIGNUM, IINFO )
               IF( IINFO.GT.0 ) THEN
                  IF( PAIR ) THEN
                     INFO = INFO + 2
                  ELSE
                     INFO = INFO + 1
                  END IF
                  IFAILL( KSR ) = K
                  IFAILL( KSI ) = K
               ELSE
                  IFAILL( KSR ) = 0
                  IFAILL( KSI ) = 0
               END IF
               DO 80 I = 1, KL - 1
                  VL( I, KSR ) = ZERO
   80          CONTINUE
               IF( PAIR ) THEN
                  DO 90 I = 1, KL - 1
                     VL( I, KSI ) = ZERO
   90             CONTINUE
               END IF
            END IF
            IF( RIGHTV ) THEN
*
*              Compute right eigenvector.
*
               CALL DLAEIN( .TRUE., NOINIT, KR, H, LDH, WKR, WKI,
     $                      VR( 1, KSR ), VR( 1, KSI ), WORK, LDWORK,
     $                      WORK( N*N+N+1 ), EPS3, SMLNUM, BIGNUM,
     $                      IINFO )
               IF( IINFO.GT.0 ) THEN
                  IF( PAIR ) THEN
                     INFO = INFO + 2
                  ELSE
                     INFO = INFO + 1
                  END IF
                  IFAILR( KSR ) = K
                  IFAILR( KSI ) = K
               ELSE
                  IFAILR( KSR ) = 0
                  IFAILR( KSI ) = 0
               END IF
               DO 100 I = KR + 1, N
                  VR( I, KSR ) = ZERO
  100          CONTINUE
               IF( PAIR ) THEN
                  DO 110 I = KR + 1, N
                     VR( I, KSI ) = ZERO
  110             CONTINUE
               END IF
            END IF
*
            IF( PAIR ) THEN
               KSR = KSR + 2
            ELSE
               KSR = KSR + 1
            END IF
         END IF
  120 CONTINUE
*
      RETURN
*
*     End of DHSEIN
*
      END