summaryrefslogtreecommitdiff
path: root/SRC/dgtts2.f
blob: 39e7b0075c1ae3758888f634efd02b1a99c92c1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
*> \brief \b DGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DGTTS2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgtts2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgtts2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgtts2.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
*
*       .. Scalar Arguments ..
*       INTEGER            ITRANS, LDB, N, NRHS
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       DOUBLE PRECISION   B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DGTTS2 solves one of the systems of equations
*>    A*X = B  or  A**T*X = B,
*> with a tridiagonal matrix A using the LU factorization computed
*> by DGTTRF.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] ITRANS
*> \verbatim
*>          ITRANS is INTEGER
*>          Specifies the form of the system of equations.
*>          = 0:  A * X = B  (No transpose)
*>          = 1:  A**T* X = B  (Transpose)
*>          = 2:  A**T* X = B  (Conjugate transpose = Transpose)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrix B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] DL
*> \verbatim
*>          DL is DOUBLE PRECISION array, dimension (N-1)
*>          The (n-1) multipliers that define the matrix L from the
*>          LU factorization of A.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (N)
*>          The n diagonal elements of the upper triangular matrix U from
*>          the LU factorization of A.
*> \endverbatim
*>
*> \param[in] DU
*> \verbatim
*>          DU is DOUBLE PRECISION array, dimension (N-1)
*>          The (n-1) elements of the first super-diagonal of U.
*> \endverbatim
*>
*> \param[in] DU2
*> \verbatim
*>          DU2 is DOUBLE PRECISION array, dimension (N-2)
*>          The (n-2) elements of the second super-diagonal of U.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          The pivot indices; for 1 <= i <= n, row i of the matrix was
*>          interchanged with row IPIV(i).  IPIV(i) will always be either
*>          i or i+1; IPIV(i) = i indicates a row interchange was not
*>          required.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
*>          On entry, the matrix of right hand side vectors B.
*>          On exit, B is overwritten by the solution vectors X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup doubleGTcomputational
*
*  =====================================================================
      SUBROUTINE DGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            ITRANS, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I, IP, J
      DOUBLE PRECISION   TEMP
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
     $   RETURN
*
      IF( ITRANS.EQ.0 ) THEN
*
*        Solve A*X = B using the LU factorization of A,
*        overwriting each right hand side vector with its solution.
*
         IF( NRHS.LE.1 ) THEN
            J = 1
   10       CONTINUE
*
*           Solve L*x = b.
*
            DO 20 I = 1, N - 1
               IP = IPIV( I )
               TEMP = B( I+1-IP+I, J ) - DL( I )*B( IP, J )
               B( I, J ) = B( IP, J )
               B( I+1, J ) = TEMP
   20       CONTINUE
*
*           Solve U*x = b.
*
            B( N, J ) = B( N, J ) / D( N )
            IF( N.GT.1 )
     $         B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
     $                       D( N-1 )
            DO 30 I = N - 2, 1, -1
               B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
     $                     B( I+2, J ) ) / D( I )
   30       CONTINUE
            IF( J.LT.NRHS ) THEN
               J = J + 1
               GO TO 10
            END IF
         ELSE
            DO 60 J = 1, NRHS
*
*              Solve L*x = b.
*
               DO 40 I = 1, N - 1
                  IF( IPIV( I ).EQ.I ) THEN
                     B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )
                  ELSE
                     TEMP = B( I, J )
                     B( I, J ) = B( I+1, J )
                     B( I+1, J ) = TEMP - DL( I )*B( I, J )
                  END IF
   40          CONTINUE
*
*              Solve U*x = b.
*
               B( N, J ) = B( N, J ) / D( N )
               IF( N.GT.1 )
     $            B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
     $                          D( N-1 )
               DO 50 I = N - 2, 1, -1
                  B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
     $                        B( I+2, J ) ) / D( I )
   50          CONTINUE
   60       CONTINUE
         END IF
      ELSE
*
*        Solve A**T * X = B.
*
         IF( NRHS.LE.1 ) THEN
*
*           Solve U**T*x = b.
*
            J = 1
   70       CONTINUE
            B( 1, J ) = B( 1, J ) / D( 1 )
            IF( N.GT.1 )
     $         B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
            DO 80 I = 3, N
               B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-DU2( I-2 )*
     $                     B( I-2, J ) ) / D( I )
   80       CONTINUE
*
*           Solve L**T*x = b.
*
            DO 90 I = N - 1, 1, -1
               IP = IPIV( I )
               TEMP = B( I, J ) - DL( I )*B( I+1, J )
               B( I, J ) = B( IP, J )
               B( IP, J ) = TEMP
   90       CONTINUE
            IF( J.LT.NRHS ) THEN
               J = J + 1
               GO TO 70
            END IF
*
         ELSE
            DO 120 J = 1, NRHS
*
*              Solve U**T*x = b.
*
               B( 1, J ) = B( 1, J ) / D( 1 )
               IF( N.GT.1 )
     $            B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
               DO 100 I = 3, N
                  B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-
     $                        DU2( I-2 )*B( I-2, J ) ) / D( I )
  100          CONTINUE
               DO 110 I = N - 1, 1, -1
                  IF( IPIV( I ).EQ.I ) THEN
                     B( I, J ) = B( I, J ) - DL( I )*B( I+1, J )
                  ELSE
                     TEMP = B( I+1, J )
                     B( I+1, J ) = B( I, J ) - DL( I )*TEMP
                     B( I, J ) = TEMP
                  END IF
  110          CONTINUE
  120       CONTINUE
         END IF
      END IF
*
*     End of DGTTS2
*
      END