summaryrefslogtreecommitdiff
path: root/SRC/dgsvj1.f
blob: b32ba0fe63973b230062b5daa9edfcf97a819bd4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
*> \brief \b DGSVJ1 pre-processor for the routine sgesvj, applies Jacobi rotations targeting only particular pivots.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download DGSVJ1 + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgsvj1.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgsvj1.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgsvj1.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE DGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV,
*                          EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
* 
*       .. Scalar Arguments ..
*       DOUBLE PRECISION   EPS, SFMIN, TOL
*       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP
*       CHARACTER*1        JOBV
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   A( LDA, * ), D( N ), SVA( N ), V( LDV, * ),
*      $                   WORK( LWORK )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DGSVJ1 is called from DGESVJ as a pre-processor and that is its main
*> purpose. It applies Jacobi rotations in the same way as DGESVJ does, but
*> it targets only particular pivots and it does not check convergence
*> (stopping criterion). Few tunning parameters (marked by [TP]) are
*> available for the implementer.
*>
*> Further Details
*> ~~~~~~~~~~~~~~~
*> DGSVJ1 applies few sweeps of Jacobi rotations in the column space of
*> the input M-by-N matrix A. The pivot pairs are taken from the (1,2)
*> off-diagonal block in the corresponding N-by-N Gram matrix A^T * A. The
*> block-entries (tiles) of the (1,2) off-diagonal block are marked by the
*> [x]'s in the following scheme:
*>
*>    | *  *  * [x] [x] [x]|
*>    | *  *  * [x] [x] [x]|    Row-cycling in the nblr-by-nblc [x] blocks.
*>    | *  *  * [x] [x] [x]|    Row-cyclic pivoting inside each [x] block.
*>    |[x] [x] [x] *  *  * |
*>    |[x] [x] [x] *  *  * |
*>    |[x] [x] [x] *  *  * |
*>
*> In terms of the columns of A, the first N1 columns are rotated 'against'
*> the remaining N-N1 columns, trying to increase the angle between the
*> corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is
*> tiled using quadratic tiles of side KBL. Here, KBL is a tunning parmeter.
*> The number of sweeps is given in NSWEEP and the orthogonality threshold
*> is given in TOL.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOBV
*> \verbatim
*>          JOBV is CHARACTER*1
*>          Specifies whether the output from this procedure is used
*>          to compute the matrix V:
*>          = 'V': the product of the Jacobi rotations is accumulated
*>                 by postmulyiplying the N-by-N array V.
*>                (See the description of V.)
*>          = 'A': the product of the Jacobi rotations is accumulated
*>                 by postmulyiplying the MV-by-N array V.
*>                (See the descriptions of MV and V.)
*>          = 'N': the Jacobi rotations are not accumulated.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the input matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the input matrix A.
*>          M >= N >= 0.
*> \endverbatim
*>
*> \param[in] N1
*> \verbatim
*>          N1 is INTEGER
*>          N1 specifies the 2 x 2 block partition, the first N1 columns are
*>          rotated 'against' the remaining N-N1 columns of A.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
*>          On entry, M-by-N matrix A, such that A*diag(D) represents
*>          the input matrix.
*>          On exit,
*>          A_onexit * D_onexit represents the input matrix A*diag(D)
*>          post-multiplied by a sequence of Jacobi rotations, where the
*>          rotation threshold and the total number of sweeps are given in
*>          TOL and NSWEEP, respectively.
*>          (See the descriptions of N1, D, TOL and NSWEEP.)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (N)
*>          The array D accumulates the scaling factors from the fast scaled
*>          Jacobi rotations.
*>          On entry, A*diag(D) represents the input matrix.
*>          On exit, A_onexit*diag(D_onexit) represents the input matrix
*>          post-multiplied by a sequence of Jacobi rotations, where the
*>          rotation threshold and the total number of sweeps are given in
*>          TOL and NSWEEP, respectively.
*>          (See the descriptions of N1, A, TOL and NSWEEP.)
*> \endverbatim
*>
*> \param[in,out] SVA
*> \verbatim
*>          SVA is DOUBLE PRECISION array, dimension (N)
*>          On entry, SVA contains the Euclidean norms of the columns of
*>          the matrix A*diag(D).
*>          On exit, SVA contains the Euclidean norms of the columns of
*>          the matrix onexit*diag(D_onexit).
*> \endverbatim
*>
*> \param[in] MV
*> \verbatim
*>          MV is INTEGER
*>          If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
*>                           sequence of Jacobi rotations.
*>          If JOBV = 'N',   then MV is not referenced.
*> \endverbatim
*>
*> \param[in,out] V
*> \verbatim
*>          V is DOUBLE PRECISION array, dimension (LDV,N)
*>          If JOBV .EQ. 'V' then N rows of V are post-multipled by a
*>                           sequence of Jacobi rotations.
*>          If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
*>                           sequence of Jacobi rotations.
*>          If JOBV = 'N',   then V is not referenced.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*>          LDV is INTEGER
*>          The leading dimension of the array V,  LDV >= 1.
*>          If JOBV = 'V', LDV .GE. N.
*>          If JOBV = 'A', LDV .GE. MV.
*> \endverbatim
*>
*> \param[in] EPS
*> \verbatim
*>          EPS is DOUBLE PRECISION
*>          EPS = DLAMCH('Epsilon')
*> \endverbatim
*>
*> \param[in] SFMIN
*> \verbatim
*>          SFMIN is DOUBLE PRECISION
*>          SFMIN = DLAMCH('Safe Minimum')
*> \endverbatim
*>
*> \param[in] TOL
*> \verbatim
*>          TOL is DOUBLE PRECISION
*>          TOL is the threshold for Jacobi rotations. For a pair
*>          A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
*>          applied only if DABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
*> \endverbatim
*>
*> \param[in] NSWEEP
*> \verbatim
*>          NSWEEP is INTEGER
*>          NSWEEP is the number of sweeps of Jacobi rotations to be
*>          performed.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          LWORK is the dimension of WORK. LWORK .GE. M.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0 : successful exit.
*>          < 0 : if INFO = -i, then the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2015
*
*> \ingroup doubleOTHERcomputational
*
*> \par Contributors:
*  ==================
*>
*> Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
*
*  =====================================================================
      SUBROUTINE DGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV,
     $                   EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
*
*  -- LAPACK computational routine (version 3.6.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2015
*
*     .. Scalar Arguments ..
      DOUBLE PRECISION   EPS, SFMIN, TOL
      INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP
      CHARACTER*1        JOBV
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), D( N ), SVA( N ), V( LDV, * ),
     $                   WORK( LWORK )
*     ..
*
*  =====================================================================
*
*     .. Local Parameters ..
      DOUBLE PRECISION   ZERO, HALF, ONE
      PARAMETER          ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION   AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG,
     $                   BIGTHETA, CS, LARGE, MXAAPQ, MXSINJ, ROOTBIG,
     $                   ROOTEPS, ROOTSFMIN, ROOTTOL, SMALL, SN, T,
     $                   TEMP1, THETA, THSIGN
      INTEGER            BLSKIP, EMPTSW, i, ibr, igl, IERR, IJBLSK,
     $                   ISWROT, jbc, jgl, KBL, MVL, NOTROT, nblc, nblr,
     $                   p, PSKIPPED, q, ROWSKIP, SWBAND
      LOGICAL            APPLV, ROTOK, RSVEC
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   FASTR( 5 )
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DABS, MAX, DBLE, MIN, DSIGN, DSQRT
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DDOT, DNRM2
      INTEGER            IDAMAX
      LOGICAL            LSAME
      EXTERNAL           IDAMAX, LSAME, DDOT, DNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DCOPY, DLASCL, DLASSQ, DROTM, DSWAP
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      APPLV = LSAME( JOBV, 'A' )
      RSVEC = LSAME( JOBV, 'V' )
      IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
         INFO = -3
      ELSE IF( N1.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.M ) THEN
         INFO = -6
      ELSE IF( ( RSVEC.OR.APPLV ) .AND. ( MV.LT.0 ) ) THEN
         INFO = -9
      ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR. 
     $         ( APPLV.AND.( LDV.LT.MV ) )  ) THEN
         INFO = -11
      ELSE IF( TOL.LE.EPS ) THEN
         INFO = -14
      ELSE IF( NSWEEP.LT.0 ) THEN
         INFO = -15
      ELSE IF( LWORK.LT.M ) THEN
         INFO = -17
      ELSE
         INFO = 0
      END IF
*
*     #:(
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGSVJ1', -INFO )
         RETURN
      END IF
*
      IF( RSVEC ) THEN
         MVL = N
      ELSE IF( APPLV ) THEN
         MVL = MV
      END IF
      RSVEC = RSVEC .OR. APPLV

      ROOTEPS = DSQRT( EPS )
      ROOTSFMIN = DSQRT( SFMIN )
      SMALL = SFMIN / EPS
      BIG = ONE / SFMIN
      ROOTBIG = ONE / ROOTSFMIN
      LARGE = BIG / DSQRT( DBLE( M*N ) )
      BIGTHETA = ONE / ROOTEPS
      ROOTTOL = DSQRT( TOL )
*
*     .. Initialize the right singular vector matrix ..
*
*     RSVEC = LSAME( JOBV, 'Y' )
*
      EMPTSW = N1*( N-N1 )
      NOTROT = 0
      FASTR( 1 ) = ZERO
*
*     .. Row-cyclic pivot strategy with de Rijk's pivoting ..
*
      KBL = MIN( 8, N )
      NBLR = N1 / KBL
      IF( ( NBLR*KBL ).NE.N1 )NBLR = NBLR + 1

*     .. the tiling is nblr-by-nblc [tiles]

      NBLC = ( N-N1 ) / KBL
      IF( ( NBLC*KBL ).NE.( N-N1 ) )NBLC = NBLC + 1
      BLSKIP = ( KBL**2 ) + 1
*[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.

      ROWSKIP = MIN( 5, KBL )
*[TP] ROWSKIP is a tuning parameter.
      SWBAND = 0
*[TP] SWBAND is a tuning parameter. It is meaningful and effective
*     if SGESVJ is used as a computational routine in the preconditioned
*     Jacobi SVD algorithm SGESVJ.
*
*
*     | *   *   * [x] [x] [x]|
*     | *   *   * [x] [x] [x]|    Row-cycling in the nblr-by-nblc [x] blocks.
*     | *   *   * [x] [x] [x]|    Row-cyclic pivoting inside each [x] block.
*     |[x] [x] [x] *   *   * |
*     |[x] [x] [x] *   *   * |
*     |[x] [x] [x] *   *   * |
*
*
      DO 1993 i = 1, NSWEEP
*     .. go go go ...
*
         MXAAPQ = ZERO
         MXSINJ = ZERO
         ISWROT = 0
*
         NOTROT = 0
         PSKIPPED = 0
*
         DO 2000 ibr = 1, NBLR

            igl = ( ibr-1 )*KBL + 1
*
*
*........................................................
* ... go to the off diagonal blocks

            igl = ( ibr-1 )*KBL + 1

            DO 2010 jbc = 1, NBLC

               jgl = N1 + ( jbc-1 )*KBL + 1

*        doing the block at ( ibr, jbc )

               IJBLSK = 0
               DO 2100 p = igl, MIN( igl+KBL-1, N1 )

                  AAPP = SVA( p )

                  IF( AAPP.GT.ZERO ) THEN

                     PSKIPPED = 0

                     DO 2200 q = jgl, MIN( jgl+KBL-1, N )
*
                        AAQQ = SVA( q )

                        IF( AAQQ.GT.ZERO ) THEN
                           AAPP0 = AAPP
*
*     .. M x 2 Jacobi SVD ..
*
*        .. Safe Gram matrix computation ..
*
                           IF( AAQQ.GE.ONE ) THEN
                              IF( AAPP.GE.AAQQ ) THEN
                                 ROTOK = ( SMALL*AAPP ).LE.AAQQ
                              ELSE
                                 ROTOK = ( SMALL*AAQQ ).LE.AAPP
                              END IF
                              IF( AAPP.LT.( BIG / AAQQ ) ) THEN
                                 AAPQ = ( DDOT( M, A( 1, p ), 1, A( 1,
     $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
     $                                  / AAPP
                              ELSE
                                 CALL DCOPY( M, A( 1, p ), 1, WORK, 1 )
                                 CALL DLASCL( 'G', 0, 0, AAPP, D( p ),
     $                                        M, 1, WORK, LDA, IERR )
                                 AAPQ = DDOT( M, WORK, 1, A( 1, q ),
     $                                  1 )*D( q ) / AAQQ
                              END IF
                           ELSE
                              IF( AAPP.GE.AAQQ ) THEN
                                 ROTOK = AAPP.LE.( AAQQ / SMALL )
                              ELSE
                                 ROTOK = AAQQ.LE.( AAPP / SMALL )
                              END IF
                              IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
                                 AAPQ = ( DDOT( M, A( 1, p ), 1, A( 1,
     $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
     $                                  / AAPP
                              ELSE
                                 CALL DCOPY( M, A( 1, q ), 1, WORK, 1 )
                                 CALL DLASCL( 'G', 0, 0, AAQQ, D( q ),
     $                                        M, 1, WORK, LDA, IERR )
                                 AAPQ = DDOT( M, WORK, 1, A( 1, p ),
     $                                  1 )*D( p ) / AAPP
                              END IF
                           END IF

                           MXAAPQ = MAX( MXAAPQ, DABS( AAPQ ) )

*        TO rotate or NOT to rotate, THAT is the question ...
*
                           IF( DABS( AAPQ ).GT.TOL ) THEN
                              NOTROT = 0
*           ROTATED  = ROTATED + 1
                              PSKIPPED = 0
                              ISWROT = ISWROT + 1
*
                              IF( ROTOK ) THEN
*
                                 AQOAP = AAQQ / AAPP
                                 APOAQ = AAPP / AAQQ
                                 THETA = -HALF*DABS(AQOAP-APOAQ) / AAPQ
                                 IF( AAQQ.GT.AAPP0 )THETA = -THETA

                                 IF( DABS( THETA ).GT.BIGTHETA ) THEN
                                    T = HALF / THETA
                                    FASTR( 3 ) = T*D( p ) / D( q )
                                    FASTR( 4 ) = -T*D( q ) / D( p )
                                    CALL DROTM( M, A( 1, p ), 1,
     $                                          A( 1, q ), 1, FASTR )
                                    IF( RSVEC )CALL DROTM( MVL,
     $                                              V( 1, p ), 1,
     $                                              V( 1, q ), 1,
     $                                              FASTR )
                                    SVA( q ) = AAQQ*DSQRT( MAX( ZERO,
     $                                         ONE+T*APOAQ*AAPQ ) )
                                    AAPP = AAPP*DSQRT( MAX( ZERO,
     $                                     ONE-T*AQOAP*AAPQ ) )
                                    MXSINJ = MAX( MXSINJ, DABS( T ) )
                                 ELSE
*
*                 .. choose correct signum for THETA and rotate
*
                                    THSIGN = -DSIGN( ONE, AAPQ )
                                    IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
                                    T = ONE / ( THETA+THSIGN*
     $                                  DSQRT( ONE+THETA*THETA ) )
                                    CS = DSQRT( ONE / ( ONE+T*T ) )
                                    SN = T*CS
                                    MXSINJ = MAX( MXSINJ, DABS( SN ) )
                                    SVA( q ) = AAQQ*DSQRT( MAX( ZERO,
     $                                         ONE+T*APOAQ*AAPQ ) )
                                    AAPP = AAPP*DSQRT( MAX( ZERO, 
     $                                    ONE-T*AQOAP*AAPQ ) )

                                    APOAQ = D( p ) / D( q )
                                    AQOAP = D( q ) / D( p )
                                    IF( D( p ).GE.ONE ) THEN
*
                                       IF( D( q ).GE.ONE ) THEN
                                          FASTR( 3 ) = T*APOAQ
                                          FASTR( 4 ) = -T*AQOAP
                                          D( p ) = D( p )*CS
                                          D( q ) = D( q )*CS
                                          CALL DROTM( M, A( 1, p ), 1,
     $                                                A( 1, q ), 1,
     $                                                FASTR )
                                          IF( RSVEC )CALL DROTM( MVL,
     $                                        V( 1, p ), 1, V( 1, q ),
     $                                        1, FASTR )
                                       ELSE
                                          CALL DAXPY( M, -T*AQOAP,
     $                                                A( 1, q ), 1,
     $                                                A( 1, p ), 1 )
                                          CALL DAXPY( M, CS*SN*APOAQ,
     $                                                A( 1, p ), 1,
     $                                                A( 1, q ), 1 )
                                          IF( RSVEC ) THEN
                                             CALL DAXPY( MVL, -T*AQOAP,
     $                                                   V( 1, q ), 1,
     $                                                   V( 1, p ), 1 )
                                             CALL DAXPY( MVL,
     $                                                   CS*SN*APOAQ,
     $                                                   V( 1, p ), 1,
     $                                                   V( 1, q ), 1 )
                                          END IF
                                          D( p ) = D( p )*CS
                                          D( q ) = D( q ) / CS
                                       END IF
                                    ELSE
                                       IF( D( q ).GE.ONE ) THEN
                                          CALL DAXPY( M, T*APOAQ,
     $                                                A( 1, p ), 1,
     $                                                A( 1, q ), 1 )
                                          CALL DAXPY( M, -CS*SN*AQOAP,
     $                                                A( 1, q ), 1,
     $                                                A( 1, p ), 1 )
                                          IF( RSVEC ) THEN
                                             CALL DAXPY( MVL, T*APOAQ,
     $                                                   V( 1, p ), 1,
     $                                                   V( 1, q ), 1 )
                                             CALL DAXPY( MVL,
     $                                                   -CS*SN*AQOAP,
     $                                                   V( 1, q ), 1,
     $                                                   V( 1, p ), 1 )
                                          END IF
                                          D( p ) = D( p ) / CS
                                          D( q ) = D( q )*CS
                                       ELSE
                                          IF( D( p ).GE.D( q ) ) THEN
                                             CALL DAXPY( M, -T*AQOAP,
     $                                                   A( 1, q ), 1,
     $                                                   A( 1, p ), 1 )
                                             CALL DAXPY( M, CS*SN*APOAQ,
     $                                                   A( 1, p ), 1,
     $                                                   A( 1, q ), 1 )
                                             D( p ) = D( p )*CS
                                             D( q ) = D( q ) / CS
                                             IF( RSVEC ) THEN
                                                CALL DAXPY( MVL,
     $                                               -T*AQOAP,
     $                                               V( 1, q ), 1,
     $                                               V( 1, p ), 1 )
                                                CALL DAXPY( MVL,
     $                                               CS*SN*APOAQ,
     $                                               V( 1, p ), 1,
     $                                               V( 1, q ), 1 )
                                             END IF
                                          ELSE
                                             CALL DAXPY( M, T*APOAQ,
     $                                                   A( 1, p ), 1,
     $                                                   A( 1, q ), 1 )
                                             CALL DAXPY( M,
     $                                                   -CS*SN*AQOAP,
     $                                                   A( 1, q ), 1,
     $                                                   A( 1, p ), 1 )
                                             D( p ) = D( p ) / CS
                                             D( q ) = D( q )*CS
                                             IF( RSVEC ) THEN
                                                CALL DAXPY( MVL,
     $                                               T*APOAQ, V( 1, p ),
     $                                               1, V( 1, q ), 1 )
                                                CALL DAXPY( MVL,
     $                                               -CS*SN*AQOAP,
     $                                               V( 1, q ), 1,
     $                                               V( 1, p ), 1 )
                                             END IF
                                          END IF
                                       END IF
                                    END IF
                                 END IF

                              ELSE
                                 IF( AAPP.GT.AAQQ ) THEN
                                    CALL DCOPY( M, A( 1, p ), 1, WORK,
     $                                          1 )
                                    CALL DLASCL( 'G', 0, 0, AAPP, ONE,
     $                                           M, 1, WORK, LDA, IERR )
                                    CALL DLASCL( 'G', 0, 0, AAQQ, ONE,
     $                                           M, 1, A( 1, q ), LDA,
     $                                           IERR )
                                    TEMP1 = -AAPQ*D( p ) / D( q )
                                    CALL DAXPY( M, TEMP1, WORK, 1,
     $                                          A( 1, q ), 1 )
                                    CALL DLASCL( 'G', 0, 0, ONE, AAQQ,
     $                                           M, 1, A( 1, q ), LDA,
     $                                           IERR )
                                    SVA( q ) = AAQQ*DSQRT( MAX( ZERO,
     $                                         ONE-AAPQ*AAPQ ) )
                                    MXSINJ = MAX( MXSINJ, SFMIN )
                                 ELSE
                                    CALL DCOPY( M, A( 1, q ), 1, WORK,
     $                                          1 )
                                    CALL DLASCL( 'G', 0, 0, AAQQ, ONE,
     $                                           M, 1, WORK, LDA, IERR )
                                    CALL DLASCL( 'G', 0, 0, AAPP, ONE,
     $                                           M, 1, A( 1, p ), LDA,
     $                                           IERR )
                                    TEMP1 = -AAPQ*D( q ) / D( p )
                                    CALL DAXPY( M, TEMP1, WORK, 1,
     $                                          A( 1, p ), 1 )
                                    CALL DLASCL( 'G', 0, 0, ONE, AAPP,
     $                                           M, 1, A( 1, p ), LDA,
     $                                           IERR )
                                    SVA( p ) = AAPP*DSQRT( MAX( ZERO,
     $                                         ONE-AAPQ*AAPQ ) )
                                    MXSINJ = MAX( MXSINJ, SFMIN )
                                 END IF
                              END IF
*           END IF ROTOK THEN ... ELSE
*
*           In the case of cancellation in updating SVA(q)
*           .. recompute SVA(q)
                              IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
     $                            THEN
                                 IF( ( AAQQ.LT.ROOTBIG ) .AND.
     $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
                                    SVA( q ) = DNRM2( M, A( 1, q ), 1 )*
     $                                         D( q )
                                 ELSE
                                    T = ZERO
                                    AAQQ = ONE
                                    CALL DLASSQ( M, A( 1, q ), 1, T,
     $                                           AAQQ )
                                    SVA( q ) = T*DSQRT( AAQQ )*D( q )
                                 END IF
                              END IF
                              IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
                                 IF( ( AAPP.LT.ROOTBIG ) .AND.
     $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
                                    AAPP = DNRM2( M, A( 1, p ), 1 )*
     $                                     D( p )
                                 ELSE
                                    T = ZERO
                                    AAPP = ONE
                                    CALL DLASSQ( M, A( 1, p ), 1, T,
     $                                           AAPP )
                                    AAPP = T*DSQRT( AAPP )*D( p )
                                 END IF
                                 SVA( p ) = AAPP
                              END IF
*              end of OK rotation
                           ELSE
                              NOTROT = NOTROT + 1
*           SKIPPED  = SKIPPED  + 1
                              PSKIPPED = PSKIPPED + 1
                              IJBLSK = IJBLSK + 1
                           END IF
                        ELSE
                           NOTROT = NOTROT + 1
                           PSKIPPED = PSKIPPED + 1
                           IJBLSK = IJBLSK + 1
                        END IF

*      IF ( NOTROT .GE. EMPTSW )  GO TO 2011
                        IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
     $                      THEN
                           SVA( p ) = AAPP
                           NOTROT = 0
                           GO TO 2011
                        END IF
                        IF( ( i.LE.SWBAND ) .AND.
     $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
                           AAPP = -AAPP
                           NOTROT = 0
                           GO TO 2203
                        END IF

*
 2200                CONTINUE
*        end of the q-loop
 2203                CONTINUE

                     SVA( p ) = AAPP
*
                  ELSE
                     IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
     $                   MIN( jgl+KBL-1, N ) - jgl + 1
                     IF( AAPP.LT.ZERO )NOTROT = 0
***      IF ( NOTROT .GE. EMPTSW )  GO TO 2011
                  END IF

 2100          CONTINUE
*     end of the p-loop
 2010       CONTINUE
*     end of the jbc-loop
 2011       CONTINUE
*2011 bailed out of the jbc-loop
            DO 2012 p = igl, MIN( igl+KBL-1, N )
               SVA( p ) = DABS( SVA( p ) )
 2012       CONTINUE
***   IF ( NOTROT .GE. EMPTSW ) GO TO 1994
 2000    CONTINUE
*2000 :: end of the ibr-loop
*
*     .. update SVA(N)
         IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
     $       THEN
            SVA( N ) = DNRM2( M, A( 1, N ), 1 )*D( N )
         ELSE
            T = ZERO
            AAPP = ONE
            CALL DLASSQ( M, A( 1, N ), 1, T, AAPP )
            SVA( N ) = T*DSQRT( AAPP )*D( N )
         END IF
*
*     Additional steering devices
*
         IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
     $       ( ISWROT.LE.N ) ) )SWBAND = i

         IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.DBLE( N )*TOL ) .AND.
     $       ( DBLE( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
            GO TO 1994
         END IF

*
         IF( NOTROT.GE.EMPTSW )GO TO 1994

 1993 CONTINUE
*     end i=1:NSWEEP loop
* #:) Reaching this point means that the procedure has completed the given
*     number of sweeps.
      INFO = NSWEEP - 1
      GO TO 1995
 1994 CONTINUE
* #:) Reaching this point means that during the i-th sweep all pivots were
*     below the given threshold, causing early exit.

      INFO = 0
* #:) INFO = 0 confirms successful iterations.
 1995 CONTINUE
*
*     Sort the vector D
*
      DO 5991 p = 1, N - 1
         q = IDAMAX( N-p+1, SVA( p ), 1 ) + p - 1
         IF( p.NE.q ) THEN
            TEMP1 = SVA( p )
            SVA( p ) = SVA( q )
            SVA( q ) = TEMP1
            TEMP1 = D( p )
            D( p ) = D( q )
            D( q ) = TEMP1
            CALL DSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
            IF( RSVEC )CALL DSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
         END IF
 5991 CONTINUE
*
      RETURN
*     ..
*     .. END OF DGSVJ1
*     ..
      END