1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
SUBROUTINE DGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
$ INFO )
*
* -- LAPACK driver routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LWORK, M, N, P
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( * ), D( * ),
$ WORK( * ), X( * )
* ..
*
* Purpose
* =======
*
* DGGLSE solves the linear equality-constrained least squares (LSE)
* problem:
*
* minimize || c - A*x ||_2 subject to B*x = d
*
* where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
* M-vector, and d is a given P-vector. It is assumed that
* P <= N <= M+P, and
*
* rank(B) = P and rank( (A) ) = N.
* ( (B) )
*
* These conditions ensure that the LSE problem has a unique solution,
* which is obtained using a generalized RQ factorization of the
* matrices (B, A) given by
*
* B = (0 R)*Q, A = Z*T*Q.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrices A and B. N >= 0.
*
* P (input) INTEGER
* The number of rows of the matrix B. 0 <= P <= N <= M+P.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the M-by-N matrix A.
* On exit, the elements on and above the diagonal of the array
* contain the min(M,N)-by-N upper trapezoidal matrix T.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
* On entry, the P-by-N matrix B.
* On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
* contains the P-by-P upper triangular matrix R.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,P).
*
* C (input/output) DOUBLE PRECISION array, dimension (M)
* On entry, C contains the right hand side vector for the
* least squares part of the LSE problem.
* On exit, the residual sum of squares for the solution
* is given by the sum of squares of elements N-P+1 to M of
* vector C.
*
* D (input/output) DOUBLE PRECISION array, dimension (P)
* On entry, D contains the right hand side vector for the
* constrained equation.
* On exit, D is destroyed.
*
* X (output) DOUBLE PRECISION array, dimension (N)
* On exit, X is the solution of the LSE problem.
*
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,M+N+P).
* For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
* where NB is an upper bound for the optimal blocksizes for
* DGEQRF, SGERQF, DORMQR and SORMRQ.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
* = 1: the upper triangular factor R associated with B in the
* generalized RQ factorization of the pair (B, A) is
* singular, so that rank(B) < P; the least squares
* solution could not be computed.
* = 2: the (N-P) by (N-P) part of the upper trapezoidal factor
* T associated with A in the generalized RQ factorization
* of the pair (B, A) is singular, so that
* rank( (A) ) < N; the least squares solution could not
* ( (B) )
* be computed.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER LOPT, LWKMIN, LWKOPT, MN, NB, NB1, NB2, NB3,
$ NB4, NR
* ..
* .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEMV, DGGRQF, DORMQR, DORMRQ,
$ DTRMV, DTRTRS, XERBLA
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
MN = MIN( M, N )
LQUERY = ( LWORK.EQ.-1 )
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( P.LT.0 .OR. P.GT.N .OR. P.LT.N-M ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
INFO = -7
END IF
*
* Calculate workspace
*
IF( INFO.EQ.0) THEN
IF( N.EQ.0 ) THEN
LWKMIN = 1
LWKOPT = 1
ELSE
NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, P, -1 )
NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, P, -1 )
NB = MAX( NB1, NB2, NB3, NB4 )
LWKMIN = M + N + P
LWKOPT = P + MN + MAX( M, N )*NB
END IF
WORK( 1 ) = LWKOPT
*
IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
INFO = -12
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGGLSE', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Compute the GRQ factorization of matrices B and A:
*
* B*Q' = ( 0 T12 ) P Z'*A*Q' = ( R11 R12 ) N-P
* N-P P ( 0 R22 ) M+P-N
* N-P P
*
* where T12 and R11 are upper triangular, and Q and Z are
* orthogonal.
*
CALL DGGRQF( P, M, N, B, LDB, WORK, A, LDA, WORK( P+1 ),
$ WORK( P+MN+1 ), LWORK-P-MN, INFO )
LOPT = WORK( P+MN+1 )
*
* Update c = Z'*c = ( c1 ) N-P
* ( c2 ) M+P-N
*
CALL DORMQR( 'Left', 'Transpose', M, 1, MN, A, LDA, WORK( P+1 ),
$ C, MAX( 1, M ), WORK( P+MN+1 ), LWORK-P-MN, INFO )
LOPT = MAX( LOPT, INT( WORK( P+MN+1 ) ) )
*
* Solve T12*x2 = d for x2
*
IF( P.GT.0 ) THEN
CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', P, 1,
$ B( 1, N-P+1 ), LDB, D, P, INFO )
*
IF( INFO.GT.0 ) THEN
INFO = 1
RETURN
END IF
*
* Put the solution in X
*
CALL DCOPY( P, D, 1, X( N-P+1 ), 1 )
*
* Update c1
*
CALL DGEMV( 'No transpose', N-P, P, -ONE, A( 1, N-P+1 ), LDA,
$ D, 1, ONE, C, 1 )
END IF
*
* Solve R11*x1 = c1 for x1
*
IF( N.GT.P ) THEN
CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N-P, 1,
$ A, LDA, C, N-P, INFO )
*
IF( INFO.GT.0 ) THEN
INFO = 2
RETURN
END IF
*
* Put the solutions in X
*
CALL DCOPY( N-P, C, 1, X, 1 )
END IF
*
* Compute the residual vector:
*
IF( M.LT.N ) THEN
NR = M + P - N
IF( NR.GT.0 )
$ CALL DGEMV( 'No transpose', NR, N-M, -ONE, A( N-P+1, M+1 ),
$ LDA, D( NR+1 ), 1, ONE, C( N-P+1 ), 1 )
ELSE
NR = P
END IF
IF( NR.GT.0 ) THEN
CALL DTRMV( 'Upper', 'No transpose', 'Non unit', NR,
$ A( N-P+1, N-P+1 ), LDA, D, 1 )
CALL DAXPY( NR, -ONE, D, 1, C( N-P+1 ), 1 )
END IF
*
* Backward transformation x = Q'*x
*
CALL DORMRQ( 'Left', 'Transpose', N, 1, P, B, LDB, WORK( 1 ), X,
$ N, WORK( P+MN+1 ), LWORK-P-MN, INFO )
WORK( 1 ) = P + MN + MAX( LOPT, INT( WORK( P+MN+1 ) ) )
*
RETURN
*
* End of DGGLSE
*
END
|