1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
|
*> \brief \b DGGGLM
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DGGGLM + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggglm.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggglm.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggglm.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
* INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDB, LWORK, M, N, P
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
* $ X( * ), Y( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGGGLM solves a general Gauss-Markov linear model (GLM) problem:
*>
*> minimize || y ||_2 subject to d = A*x + B*y
*> x
*>
*> where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
*> given N-vector. It is assumed that M <= N <= M+P, and
*>
*> rank(A) = M and rank( A B ) = N.
*>
*> Under these assumptions, the constrained equation is always
*> consistent, and there is a unique solution x and a minimal 2-norm
*> solution y, which is obtained using a generalized QR factorization
*> of the matrices (A, B) given by
*>
*> A = Q*(R), B = Q*T*Z.
*> (0)
*>
*> In particular, if matrix B is square nonsingular, then the problem
*> GLM is equivalent to the following weighted linear least squares
*> problem
*>
*> minimize || inv(B)*(d-A*x) ||_2
*> x
*>
*> where inv(B) denotes the inverse of B.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of columns of the matrix A. 0 <= M <= N.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*> P is INTEGER
*> The number of columns of the matrix B. P >= N-M.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,M)
*> On entry, the N-by-M matrix A.
*> On exit, the upper triangular part of the array A contains
*> the M-by-M upper triangular matrix R.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,P)
*> On entry, the N-by-P matrix B.
*> On exit, if N <= P, the upper triangle of the subarray
*> B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
*> if N > P, the elements on and above the (N-P)th subdiagonal
*> contain the N-by-P upper trapezoidal matrix T.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> On entry, D is the left hand side of the GLM equation.
*> On exit, D is destroyed.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is DOUBLE PRECISION array, dimension (M)
*> \endverbatim
*>
*> \param[out] Y
*> \verbatim
*> Y is DOUBLE PRECISION array, dimension (P)
*>
*> On exit, X and Y are the solutions of the GLM problem.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,N+M+P).
*> For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
*> where NB is an upper bound for the optimal blocksizes for
*> DGEQRF, SGERQF, DORMQR and SORMRQ.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> = 1: the upper triangular factor R associated with A in the
*> generalized QR factorization of the pair (A, B) is
*> singular, so that rank(A) < M; the least squares
*> solution could not be computed.
*> = 2: the bottom (N-M) by (N-M) part of the upper trapezoidal
*> factor T associated with B in the generalized QR
*> factorization of the pair (A, B) is singular, so that
*> rank( A B ) < N; the least squares solution could not
*> be computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup doubleOTHEReigen
*
* =====================================================================
SUBROUTINE DGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
$ INFO )
*
* -- LAPACK driver routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LWORK, M, N, P
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
$ X( * ), Y( * )
* ..
*
* ===================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3,
$ NB4, NP
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DGEMV, DGGQRF, DORMQR, DORMRQ, DTRTRS,
$ XERBLA
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
NP = MIN( N, P )
LQUERY = ( LWORK.EQ.-1 )
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
INFO = -2
ELSE IF( P.LT.0 .OR. P.LT.N-M ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
END IF
*
* Calculate workspace
*
IF( INFO.EQ.0) THEN
IF( N.EQ.0 ) THEN
LWKMIN = 1
LWKOPT = 1
ELSE
NB1 = ILAENV( 1, 'DGEQRF', ' ', N, M, -1, -1 )
NB2 = ILAENV( 1, 'DGERQF', ' ', N, M, -1, -1 )
NB3 = ILAENV( 1, 'DORMQR', ' ', N, M, P, -1 )
NB4 = ILAENV( 1, 'DORMRQ', ' ', N, M, P, -1 )
NB = MAX( NB1, NB2, NB3, NB4 )
LWKMIN = M + N + P
LWKOPT = M + NP + MAX( N, P )*NB
END IF
WORK( 1 ) = LWKOPT
*
IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
INFO = -12
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGGGLM', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Compute the GQR factorization of matrices A and B:
*
* Q**T*A = ( R11 ) M, Q**T*B*Z**T = ( T11 T12 ) M
* ( 0 ) N-M ( 0 T22 ) N-M
* M M+P-N N-M
*
* where R11 and T22 are upper triangular, and Q and Z are
* orthogonal.
*
CALL DGGQRF( N, M, P, A, LDA, WORK, B, LDB, WORK( M+1 ),
$ WORK( M+NP+1 ), LWORK-M-NP, INFO )
LOPT = WORK( M+NP+1 )
*
* Update left-hand-side vector d = Q**T*d = ( d1 ) M
* ( d2 ) N-M
*
CALL DORMQR( 'Left', 'Transpose', N, 1, M, A, LDA, WORK, D,
$ MAX( 1, N ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
LOPT = MAX( LOPT, INT( WORK( M+NP+1 ) ) )
*
* Solve T22*y2 = d2 for y2
*
IF( N.GT.M ) THEN
CALL DTRTRS( 'Upper', 'No transpose', 'Non unit', N-M, 1,
$ B( M+1, M+P-N+1 ), LDB, D( M+1 ), N-M, INFO )
*
IF( INFO.GT.0 ) THEN
INFO = 1
RETURN
END IF
*
CALL DCOPY( N-M, D( M+1 ), 1, Y( M+P-N+1 ), 1 )
END IF
*
* Set y1 = 0
*
DO 10 I = 1, M + P - N
Y( I ) = ZERO
10 CONTINUE
*
* Update d1 = d1 - T12*y2
*
CALL DGEMV( 'No transpose', M, N-M, -ONE, B( 1, M+P-N+1 ), LDB,
$ Y( M+P-N+1 ), 1, ONE, D, 1 )
*
* Solve triangular system: R11*x = d1
*
IF( M.GT.0 ) THEN
CALL DTRTRS( 'Upper', 'No Transpose', 'Non unit', M, 1, A, LDA,
$ D, M, INFO )
*
IF( INFO.GT.0 ) THEN
INFO = 2
RETURN
END IF
*
* Copy D to X
*
CALL DCOPY( M, D, 1, X, 1 )
END IF
*
* Backward transformation y = Z**T *y
*
CALL DORMRQ( 'Left', 'Transpose', P, 1, NP,
$ B( MAX( 1, N-P+1 ), 1 ), LDB, WORK( M+1 ), Y,
$ MAX( 1, P ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
WORK( 1 ) = M + NP + MAX( LOPT, INT( WORK( M+NP+1 ) ) )
*
RETURN
*
* End of DGGGLM
*
END
|