1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
|
*> \brief \b DGGBAL
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DGGBAL + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggbal.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggbal.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggbal.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE,
* RSCALE, WORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOB
* INTEGER IHI, ILO, INFO, LDA, LDB, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), LSCALE( * ),
* $ RSCALE( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGGBAL balances a pair of general real matrices (A,B). This
*> involves, first, permuting A and B by similarity transformations to
*> isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N
*> elements on the diagonal; and second, applying a diagonal similarity
*> transformation to rows and columns ILO to IHI to make the rows
*> and columns as close in norm as possible. Both steps are optional.
*>
*> Balancing may reduce the 1-norm of the matrices, and improve the
*> accuracy of the computed eigenvalues and/or eigenvectors in the
*> generalized eigenvalue problem A*x = lambda*B*x.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOB
*> \verbatim
*> JOB is CHARACTER*1
*> Specifies the operations to be performed on A and B:
*> = 'N': none: simply set ILO = 1, IHI = N, LSCALE(I) = 1.0
*> and RSCALE(I) = 1.0 for i = 1,...,N.
*> = 'P': permute only;
*> = 'S': scale only;
*> = 'B': both permute and scale.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the input matrix A.
*> On exit, A is overwritten by the balanced matrix.
*> If JOB = 'N', A is not referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,N)
*> On entry, the input matrix B.
*> On exit, B is overwritten by the balanced matrix.
*> If JOB = 'N', B is not referenced.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] ILO
*> \verbatim
*> ILO is INTEGER
*> \endverbatim
*>
*> \param[out] IHI
*> \verbatim
*> IHI is INTEGER
*> ILO and IHI are set to integers such that on exit
*> A(i,j) = 0 and B(i,j) = 0 if i > j and
*> j = 1,...,ILO-1 or i = IHI+1,...,N.
*> If JOB = 'N' or 'S', ILO = 1 and IHI = N.
*> \endverbatim
*>
*> \param[out] LSCALE
*> \verbatim
*> LSCALE is DOUBLE PRECISION array, dimension (N)
*> Details of the permutations and scaling factors applied
*> to the left side of A and B. If P(j) is the index of the
*> row interchanged with row j, and D(j)
*> is the scaling factor applied to row j, then
*> LSCALE(j) = P(j) for J = 1,...,ILO-1
*> = D(j) for J = ILO,...,IHI
*> = P(j) for J = IHI+1,...,N.
*> The order in which the interchanges are made is N to IHI+1,
*> then 1 to ILO-1.
*> \endverbatim
*>
*> \param[out] RSCALE
*> \verbatim
*> RSCALE is DOUBLE PRECISION array, dimension (N)
*> Details of the permutations and scaling factors applied
*> to the right side of A and B. If P(j) is the index of the
*> column interchanged with column j, and D(j)
*> is the scaling factor applied to column j, then
*> LSCALE(j) = P(j) for J = 1,...,ILO-1
*> = D(j) for J = ILO,...,IHI
*> = P(j) for J = IHI+1,...,N.
*> The order in which the interchanges are made is N to IHI+1,
*> then 1 to ILO-1.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (lwork)
*> lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and
*> at least 1 when JOB = 'N' or 'P'.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup doubleGBcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> See R.C. WARD, Balancing the generalized eigenvalue problem,
*> SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE,
$ RSCALE, WORK, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER JOB
INTEGER IHI, ILO, INFO, LDA, LDB, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), LSCALE( * ),
$ RSCALE( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, HALF, ONE
PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
DOUBLE PRECISION THREE, SCLFAC
PARAMETER ( THREE = 3.0D+0, SCLFAC = 1.0D+1 )
* ..
* .. Local Scalars ..
INTEGER I, ICAB, IFLOW, IP1, IR, IRAB, IT, J, JC, JP1,
$ K, KOUNT, L, LCAB, LM1, LRAB, LSFMAX, LSFMIN,
$ M, NR, NRP2
DOUBLE PRECISION ALPHA, BASL, BETA, CAB, CMAX, COEF, COEF2,
$ COEF5, COR, EW, EWC, GAMMA, PGAMMA, RAB, SFMAX,
$ SFMIN, SUM, T, TA, TB, TC
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER IDAMAX
DOUBLE PRECISION DDOT, DLAMCH
EXTERNAL LSAME, IDAMAX, DDOT, DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DAXPY, DSCAL, DSWAP, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, INT, LOG10, MAX, MIN, SIGN
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
$ .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGGBAL', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 ) THEN
ILO = 1
IHI = N
RETURN
END IF
*
IF( N.EQ.1 ) THEN
ILO = 1
IHI = N
LSCALE( 1 ) = ONE
RSCALE( 1 ) = ONE
RETURN
END IF
*
IF( LSAME( JOB, 'N' ) ) THEN
ILO = 1
IHI = N
DO 10 I = 1, N
LSCALE( I ) = ONE
RSCALE( I ) = ONE
10 CONTINUE
RETURN
END IF
*
K = 1
L = N
IF( LSAME( JOB, 'S' ) )
$ GO TO 190
*
GO TO 30
*
* Permute the matrices A and B to isolate the eigenvalues.
*
* Find row with one nonzero in columns 1 through L
*
20 CONTINUE
L = LM1
IF( L.NE.1 )
$ GO TO 30
*
RSCALE( 1 ) = ONE
LSCALE( 1 ) = ONE
GO TO 190
*
30 CONTINUE
LM1 = L - 1
DO 80 I = L, 1, -1
DO 40 J = 1, LM1
JP1 = J + 1
IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
$ GO TO 50
40 CONTINUE
J = L
GO TO 70
*
50 CONTINUE
DO 60 J = JP1, L
IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
$ GO TO 80
60 CONTINUE
J = JP1 - 1
*
70 CONTINUE
M = L
IFLOW = 1
GO TO 160
80 CONTINUE
GO TO 100
*
* Find column with one nonzero in rows K through N
*
90 CONTINUE
K = K + 1
*
100 CONTINUE
DO 150 J = K, L
DO 110 I = K, LM1
IP1 = I + 1
IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
$ GO TO 120
110 CONTINUE
I = L
GO TO 140
120 CONTINUE
DO 130 I = IP1, L
IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
$ GO TO 150
130 CONTINUE
I = IP1 - 1
140 CONTINUE
M = K
IFLOW = 2
GO TO 160
150 CONTINUE
GO TO 190
*
* Permute rows M and I
*
160 CONTINUE
LSCALE( M ) = I
IF( I.EQ.M )
$ GO TO 170
CALL DSWAP( N-K+1, A( I, K ), LDA, A( M, K ), LDA )
CALL DSWAP( N-K+1, B( I, K ), LDB, B( M, K ), LDB )
*
* Permute columns M and J
*
170 CONTINUE
RSCALE( M ) = J
IF( J.EQ.M )
$ GO TO 180
CALL DSWAP( L, A( 1, J ), 1, A( 1, M ), 1 )
CALL DSWAP( L, B( 1, J ), 1, B( 1, M ), 1 )
*
180 CONTINUE
GO TO ( 20, 90 )IFLOW
*
190 CONTINUE
ILO = K
IHI = L
*
IF( LSAME( JOB, 'P' ) ) THEN
DO 195 I = ILO, IHI
LSCALE( I ) = ONE
RSCALE( I ) = ONE
195 CONTINUE
RETURN
END IF
*
IF( ILO.EQ.IHI )
$ RETURN
*
* Balance the submatrix in rows ILO to IHI.
*
NR = IHI - ILO + 1
DO 200 I = ILO, IHI
RSCALE( I ) = ZERO
LSCALE( I ) = ZERO
*
WORK( I ) = ZERO
WORK( I+N ) = ZERO
WORK( I+2*N ) = ZERO
WORK( I+3*N ) = ZERO
WORK( I+4*N ) = ZERO
WORK( I+5*N ) = ZERO
200 CONTINUE
*
* Compute right side vector in resulting linear equations
*
BASL = LOG10( SCLFAC )
DO 240 I = ILO, IHI
DO 230 J = ILO, IHI
TB = B( I, J )
TA = A( I, J )
IF( TA.EQ.ZERO )
$ GO TO 210
TA = LOG10( ABS( TA ) ) / BASL
210 CONTINUE
IF( TB.EQ.ZERO )
$ GO TO 220
TB = LOG10( ABS( TB ) ) / BASL
220 CONTINUE
WORK( I+4*N ) = WORK( I+4*N ) - TA - TB
WORK( J+5*N ) = WORK( J+5*N ) - TA - TB
230 CONTINUE
240 CONTINUE
*
COEF = ONE / DBLE( 2*NR )
COEF2 = COEF*COEF
COEF5 = HALF*COEF2
NRP2 = NR + 2
BETA = ZERO
IT = 1
*
* Start generalized conjugate gradient iteration
*
250 CONTINUE
*
GAMMA = DDOT( NR, WORK( ILO+4*N ), 1, WORK( ILO+4*N ), 1 ) +
$ DDOT( NR, WORK( ILO+5*N ), 1, WORK( ILO+5*N ), 1 )
*
EW = ZERO
EWC = ZERO
DO 260 I = ILO, IHI
EW = EW + WORK( I+4*N )
EWC = EWC + WORK( I+5*N )
260 CONTINUE
*
GAMMA = COEF*GAMMA - COEF2*( EW**2+EWC**2 ) - COEF5*( EW-EWC )**2
IF( GAMMA.EQ.ZERO )
$ GO TO 350
IF( IT.NE.1 )
$ BETA = GAMMA / PGAMMA
T = COEF5*( EWC-THREE*EW )
TC = COEF5*( EW-THREE*EWC )
*
CALL DSCAL( NR, BETA, WORK( ILO ), 1 )
CALL DSCAL( NR, BETA, WORK( ILO+N ), 1 )
*
CALL DAXPY( NR, COEF, WORK( ILO+4*N ), 1, WORK( ILO+N ), 1 )
CALL DAXPY( NR, COEF, WORK( ILO+5*N ), 1, WORK( ILO ), 1 )
*
DO 270 I = ILO, IHI
WORK( I ) = WORK( I ) + TC
WORK( I+N ) = WORK( I+N ) + T
270 CONTINUE
*
* Apply matrix to vector
*
DO 300 I = ILO, IHI
KOUNT = 0
SUM = ZERO
DO 290 J = ILO, IHI
IF( A( I, J ).EQ.ZERO )
$ GO TO 280
KOUNT = KOUNT + 1
SUM = SUM + WORK( J )
280 CONTINUE
IF( B( I, J ).EQ.ZERO )
$ GO TO 290
KOUNT = KOUNT + 1
SUM = SUM + WORK( J )
290 CONTINUE
WORK( I+2*N ) = DBLE( KOUNT )*WORK( I+N ) + SUM
300 CONTINUE
*
DO 330 J = ILO, IHI
KOUNT = 0
SUM = ZERO
DO 320 I = ILO, IHI
IF( A( I, J ).EQ.ZERO )
$ GO TO 310
KOUNT = KOUNT + 1
SUM = SUM + WORK( I+N )
310 CONTINUE
IF( B( I, J ).EQ.ZERO )
$ GO TO 320
KOUNT = KOUNT + 1
SUM = SUM + WORK( I+N )
320 CONTINUE
WORK( J+3*N ) = DBLE( KOUNT )*WORK( J ) + SUM
330 CONTINUE
*
SUM = DDOT( NR, WORK( ILO+N ), 1, WORK( ILO+2*N ), 1 ) +
$ DDOT( NR, WORK( ILO ), 1, WORK( ILO+3*N ), 1 )
ALPHA = GAMMA / SUM
*
* Determine correction to current iteration
*
CMAX = ZERO
DO 340 I = ILO, IHI
COR = ALPHA*WORK( I+N )
IF( ABS( COR ).GT.CMAX )
$ CMAX = ABS( COR )
LSCALE( I ) = LSCALE( I ) + COR
COR = ALPHA*WORK( I )
IF( ABS( COR ).GT.CMAX )
$ CMAX = ABS( COR )
RSCALE( I ) = RSCALE( I ) + COR
340 CONTINUE
IF( CMAX.LT.HALF )
$ GO TO 350
*
CALL DAXPY( NR, -ALPHA, WORK( ILO+2*N ), 1, WORK( ILO+4*N ), 1 )
CALL DAXPY( NR, -ALPHA, WORK( ILO+3*N ), 1, WORK( ILO+5*N ), 1 )
*
PGAMMA = GAMMA
IT = IT + 1
IF( IT.LE.NRP2 )
$ GO TO 250
*
* End generalized conjugate gradient iteration
*
350 CONTINUE
SFMIN = DLAMCH( 'S' )
SFMAX = ONE / SFMIN
LSFMIN = INT( LOG10( SFMIN ) / BASL+ONE )
LSFMAX = INT( LOG10( SFMAX ) / BASL )
DO 360 I = ILO, IHI
IRAB = IDAMAX( N-ILO+1, A( I, ILO ), LDA )
RAB = ABS( A( I, IRAB+ILO-1 ) )
IRAB = IDAMAX( N-ILO+1, B( I, ILO ), LDB )
RAB = MAX( RAB, ABS( B( I, IRAB+ILO-1 ) ) )
LRAB = INT( LOG10( RAB+SFMIN ) / BASL+ONE )
IR = LSCALE( I ) + SIGN( HALF, LSCALE( I ) )
IR = MIN( MAX( IR, LSFMIN ), LSFMAX, LSFMAX-LRAB )
LSCALE( I ) = SCLFAC**IR
ICAB = IDAMAX( IHI, A( 1, I ), 1 )
CAB = ABS( A( ICAB, I ) )
ICAB = IDAMAX( IHI, B( 1, I ), 1 )
CAB = MAX( CAB, ABS( B( ICAB, I ) ) )
LCAB = INT( LOG10( CAB+SFMIN ) / BASL+ONE )
JC = RSCALE( I ) + SIGN( HALF, RSCALE( I ) )
JC = MIN( MAX( JC, LSFMIN ), LSFMAX, LSFMAX-LCAB )
RSCALE( I ) = SCLFAC**JC
360 CONTINUE
*
* Row scaling of matrices A and B
*
DO 370 I = ILO, IHI
CALL DSCAL( N-ILO+1, LSCALE( I ), A( I, ILO ), LDA )
CALL DSCAL( N-ILO+1, LSCALE( I ), B( I, ILO ), LDB )
370 CONTINUE
*
* Column scaling of matrices A and B
*
DO 380 J = ILO, IHI
CALL DSCAL( IHI, RSCALE( J ), A( 1, J ), 1 )
CALL DSCAL( IHI, RSCALE( J ), B( 1, J ), 1 )
380 CONTINUE
*
RETURN
*
* End of DGGBAL
*
END
|