1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
|
*> \brief <b> DGELS solves overdetermined or underdetermined systems for GE matrices</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DGELS + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgels.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgels.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgels.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
* INFO )
*
* .. Scalar Arguments ..
* CHARACTER TRANS
* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGELS solves overdetermined or underdetermined real linear systems
*> involving an M-by-N matrix A, or its transpose, using a QR or LQ
*> factorization of A. It is assumed that A has full rank.
*>
*> The following options are provided:
*>
*> 1. If TRANS = 'N' and m >= n: find the least squares solution of
*> an overdetermined system, i.e., solve the least squares problem
*> minimize || B - A*X ||.
*>
*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
*> an underdetermined system A * X = B.
*>
*> 3. If TRANS = 'T' and m >= n: find the minimum norm solution of
*> an underdetermined system A**T * X = B.
*>
*> 4. If TRANS = 'T' and m < n: find the least squares solution of
*> an overdetermined system, i.e., solve the least squares problem
*> minimize || B - A**T * X ||.
*>
*> Several right hand side vectors b and solution vectors x can be
*> handled in a single call; they are stored as the columns of the
*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
*> matrix X.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': the linear system involves A;
*> = 'T': the linear system involves A**T.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of
*> columns of the matrices B and X. NRHS >=0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit,
*> if M >= N, A is overwritten by details of its QR
*> factorization as returned by DGEQRF;
*> if M < N, A is overwritten by details of its LQ
*> factorization as returned by DGELQF.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
*> On entry, the matrix B of right hand side vectors, stored
*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
*> if TRANS = 'T'.
*> On exit, if INFO = 0, B is overwritten by the solution
*> vectors, stored columnwise:
*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
*> squares solution vectors; the residual sum of squares for the
*> solution in each column is given by the sum of squares of
*> elements N+1 to M in that column;
*> if TRANS = 'N' and m < n, rows 1 to N of B contain the
*> minimum norm solution vectors;
*> if TRANS = 'T' and m >= n, rows 1 to M of B contain the
*> minimum norm solution vectors;
*> if TRANS = 'T' and m < n, rows 1 to M of B contain the
*> least squares solution vectors; the residual sum of squares
*> for the solution in each column is given by the sum of
*> squares of elements M+1 to N in that column.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= MAX(1,M,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> LWORK >= max( 1, MN + max( MN, NRHS ) ).
*> For optimal performance,
*> LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
*> where MN = min(M,N) and NB is the optimum block size.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, the i-th diagonal element of the
*> triangular factor of A is zero, so that A does not have
*> full rank; the least squares solution could not be
*> computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup doubleGEsolve
*
* =====================================================================
SUBROUTINE DGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
$ INFO )
*
* -- LAPACK driver routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, TPSD
INTEGER BROW, I, IASCL, IBSCL, J, MN, NB, SCLLEN, WSIZE
DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM
* ..
* .. Local Arrays ..
DOUBLE PRECISION RWORK( 1 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL LSAME, ILAENV, DLABAD, DLAMCH, DLANGE
* ..
* .. External Subroutines ..
EXTERNAL DGELQF, DGEQRF, DLASCL, DLASET, DORMLQ, DORMQR,
$ DTRTRS, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments.
*
INFO = 0
MN = MIN( M, N )
LQUERY = ( LWORK.EQ.-1 )
IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( NRHS.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
INFO = -8
ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
$ THEN
INFO = -10
END IF
*
* Figure out optimal block size
*
IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
*
TPSD = .TRUE.
IF( LSAME( TRANS, 'N' ) )
$ TPSD = .FALSE.
*
IF( M.GE.N ) THEN
NB = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
IF( TPSD ) THEN
NB = MAX( NB, ILAENV( 1, 'DORMQR', 'LN', M, NRHS, N,
$ -1 ) )
ELSE
NB = MAX( NB, ILAENV( 1, 'DORMQR', 'LT', M, NRHS, N,
$ -1 ) )
END IF
ELSE
NB = ILAENV( 1, 'DGELQF', ' ', M, N, -1, -1 )
IF( TPSD ) THEN
NB = MAX( NB, ILAENV( 1, 'DORMLQ', 'LT', N, NRHS, M,
$ -1 ) )
ELSE
NB = MAX( NB, ILAENV( 1, 'DORMLQ', 'LN', N, NRHS, M,
$ -1 ) )
END IF
END IF
*
WSIZE = MAX( 1, MN+MAX( MN, NRHS )*NB )
WORK( 1 ) = DBLE( WSIZE )
*
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGELS ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( MIN( M, N, NRHS ).EQ.0 ) THEN
CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
RETURN
END IF
*
* Get machine parameters
*
SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
*
* Scale A, B if max element outside range [SMLNUM,BIGNUM]
*
ANRM = DLANGE( 'M', M, N, A, LDA, RWORK )
IASCL = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
IASCL = 1
ELSE IF( ANRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
IASCL = 2
ELSE IF( ANRM.EQ.ZERO ) THEN
*
* Matrix all zero. Return zero solution.
*
CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
GO TO 50
END IF
*
BROW = M
IF( TPSD )
$ BROW = N
BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
IBSCL = 0
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
$ INFO )
IBSCL = 1
ELSE IF( BNRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
$ INFO )
IBSCL = 2
END IF
*
IF( M.GE.N ) THEN
*
* compute QR factorization of A
*
CALL DGEQRF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
$ INFO )
*
* workspace at least N, optimally N*NB
*
IF( .NOT.TPSD ) THEN
*
* Least-Squares Problem min || A * X - B ||
*
* B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
*
CALL DORMQR( 'Left', 'Transpose', M, NRHS, N, A, LDA,
$ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
$ INFO )
*
* workspace at least NRHS, optimally NRHS*NB
*
* B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
*
CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
SCLLEN = N
*
ELSE
*
* Underdetermined system of equations A**T * X = B
*
* B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
*
CALL DTRTRS( 'Upper', 'Transpose', 'Non-unit', N, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
* B(N+1:M,1:NRHS) = ZERO
*
DO 20 J = 1, NRHS
DO 10 I = N + 1, M
B( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
*
* B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
*
CALL DORMQR( 'Left', 'No transpose', M, NRHS, N, A, LDA,
$ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
$ INFO )
*
* workspace at least NRHS, optimally NRHS*NB
*
SCLLEN = M
*
END IF
*
ELSE
*
* Compute LQ factorization of A
*
CALL DGELQF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
$ INFO )
*
* workspace at least M, optimally M*NB.
*
IF( .NOT.TPSD ) THEN
*
* underdetermined system of equations A * X = B
*
* B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
*
CALL DTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
* B(M+1:N,1:NRHS) = 0
*
DO 40 J = 1, NRHS
DO 30 I = M + 1, N
B( I, J ) = ZERO
30 CONTINUE
40 CONTINUE
*
* B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS)
*
CALL DORMLQ( 'Left', 'Transpose', N, NRHS, M, A, LDA,
$ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
$ INFO )
*
* workspace at least NRHS, optimally NRHS*NB
*
SCLLEN = N
*
ELSE
*
* overdetermined system min || A**T * X - B ||
*
* B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
*
CALL DORMLQ( 'Left', 'No transpose', N, NRHS, M, A, LDA,
$ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
$ INFO )
*
* workspace at least NRHS, optimally NRHS*NB
*
* B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
*
CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
SCLLEN = M
*
END IF
*
END IF
*
* Undo scaling
*
IF( IASCL.EQ.1 ) THEN
CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
$ INFO )
ELSE IF( IASCL.EQ.2 ) THEN
CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
$ INFO )
END IF
IF( IBSCL.EQ.1 ) THEN
CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
$ INFO )
ELSE IF( IBSCL.EQ.2 ) THEN
CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
$ INFO )
END IF
*
50 CONTINUE
WORK( 1 ) = DBLE( WSIZE )
*
RETURN
*
* End of DGELS
*
END
|