summaryrefslogtreecommitdiff
path: root/SRC/dgegv.f
blob: c687c413daa1938a47b79aaca2b69fa8d00cd099 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
*> \brief <b> DGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download DGEGV + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgegv.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgegv.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgegv.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE DGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
*                         BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          JOBVL, JOBVR
*       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
*      $                   B( LDB, * ), BETA( * ), VL( LDVL, * ),
*      $                   VR( LDVR, * ), WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> This routine is deprecated and has been replaced by routine DGGEV.
*>
*> DGEGV computes the eigenvalues and, optionally, the left and/or right
*> eigenvectors of a real matrix pair (A,B).
*> Given two square matrices A and B,
*> the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
*> eigenvalues lambda and corresponding (non-zero) eigenvectors x such
*> that
*>
*>    A*x = lambda*B*x.
*>
*> An alternate form is to find the eigenvalues mu and corresponding
*> eigenvectors y such that
*>
*>    mu*A*y = B*y.
*>
*> These two forms are equivalent with mu = 1/lambda and x = y if
*> neither lambda nor mu is zero.  In order to deal with the case that
*> lambda or mu is zero or small, two values alpha and beta are returned
*> for each eigenvalue, such that lambda = alpha/beta and
*> mu = beta/alpha.
*>
*> The vectors x and y in the above equations are right eigenvectors of
*> the matrix pair (A,B).  Vectors u and v satisfying
*>
*>    u**H*A = lambda*u**H*B  or  mu*v**H*A = v**H*B
*>
*> are left eigenvectors of (A,B).
*>
*> Note: this routine performs "full balancing" on A and B
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOBVL
*> \verbatim
*>          JOBVL is CHARACTER*1
*>          = 'N':  do not compute the left generalized eigenvectors;
*>          = 'V':  compute the left generalized eigenvectors (returned
*>                  in VL).
*> \endverbatim
*>
*> \param[in] JOBVR
*> \verbatim
*>          JOBVR is CHARACTER*1
*>          = 'N':  do not compute the right generalized eigenvectors;
*>          = 'V':  compute the right generalized eigenvectors (returned
*>                  in VR).
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrices A, B, VL, and VR.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA, N)
*>          On entry, the matrix A.
*>          If JOBVL = 'V' or JOBVR = 'V', then on exit A
*>          contains the real Schur form of A from the generalized Schur
*>          factorization of the pair (A,B) after balancing.
*>          If no eigenvectors were computed, then only the diagonal
*>          blocks from the Schur form will be correct.  See DGGHRD and
*>          DHGEQZ for details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is DOUBLE PRECISION array, dimension (LDB, N)
*>          On entry, the matrix B.
*>          If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
*>          upper triangular matrix obtained from B in the generalized
*>          Schur factorization of the pair (A,B) after balancing.
*>          If no eigenvectors were computed, then only those elements of
*>          B corresponding to the diagonal blocks from the Schur form of
*>          A will be correct.  See DGGHRD and DHGEQZ for details.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] ALPHAR
*> \verbatim
*>          ALPHAR is DOUBLE PRECISION array, dimension (N)
*>          The real parts of each scalar alpha defining an eigenvalue of
*>          GNEP.
*> \endverbatim
*>
*> \param[out] ALPHAI
*> \verbatim
*>          ALPHAI is DOUBLE PRECISION array, dimension (N)
*>          The imaginary parts of each scalar alpha defining an
*>          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th
*>          eigenvalue is real; if positive, then the j-th and
*>          (j+1)-st eigenvalues are a complex conjugate pair, with
*>          ALPHAI(j+1) = -ALPHAI(j).
*> \endverbatim
*>
*> \param[out] BETA
*> \verbatim
*>          BETA is DOUBLE PRECISION array, dimension (N)
*>          The scalars beta that define the eigenvalues of GNEP.
*>          
*>          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
*>          beta = BETA(j) represent the j-th eigenvalue of the matrix
*>          pair (A,B), in one of the forms lambda = alpha/beta or
*>          mu = beta/alpha.  Since either lambda or mu may overflow,
*>          they should not, in general, be computed.
*> \endverbatim
*>
*> \param[out] VL
*> \verbatim
*>          VL is DOUBLE PRECISION array, dimension (LDVL,N)
*>          If JOBVL = 'V', the left eigenvectors u(j) are stored
*>          in the columns of VL, in the same order as their eigenvalues.
*>          If the j-th eigenvalue is real, then u(j) = VL(:,j).
*>          If the j-th and (j+1)-st eigenvalues form a complex conjugate
*>          pair, then
*>             u(j) = VL(:,j) + i*VL(:,j+1)
*>          and
*>            u(j+1) = VL(:,j) - i*VL(:,j+1).
*>
*>          Each eigenvector is scaled so that its largest component has
*>          abs(real part) + abs(imag. part) = 1, except for eigenvectors
*>          corresponding to an eigenvalue with alpha = beta = 0, which
*>          are set to zero.
*>          Not referenced if JOBVL = 'N'.
*> \endverbatim
*>
*> \param[in] LDVL
*> \verbatim
*>          LDVL is INTEGER
*>          The leading dimension of the matrix VL. LDVL >= 1, and
*>          if JOBVL = 'V', LDVL >= N.
*> \endverbatim
*>
*> \param[out] VR
*> \verbatim
*>          VR is DOUBLE PRECISION array, dimension (LDVR,N)
*>          If JOBVR = 'V', the right eigenvectors x(j) are stored
*>          in the columns of VR, in the same order as their eigenvalues.
*>          If the j-th eigenvalue is real, then x(j) = VR(:,j).
*>          If the j-th and (j+1)-st eigenvalues form a complex conjugate
*>          pair, then
*>            x(j) = VR(:,j) + i*VR(:,j+1)
*>          and
*>            x(j+1) = VR(:,j) - i*VR(:,j+1).
*>
*>          Each eigenvector is scaled so that its largest component has
*>          abs(real part) + abs(imag. part) = 1, except for eigenvalues
*>          corresponding to an eigenvalue with alpha = beta = 0, which
*>          are set to zero.
*>          Not referenced if JOBVR = 'N'.
*> \endverbatim
*>
*> \param[in] LDVR
*> \verbatim
*>          LDVR is INTEGER
*>          The leading dimension of the matrix VR. LDVR >= 1, and
*>          if JOBVR = 'V', LDVR >= N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.  LWORK >= max(1,8*N).
*>          For good performance, LWORK must generally be larger.
*>          To compute the optimal value of LWORK, call ILAENV to get
*>          blocksizes (for DGEQRF, DORMQR, and DORGQR.)  Then compute:
*>          NB  -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR;
*>          The optimal LWORK is:
*>              2*N + MAX( 6*N, N*(NB+1) ).
*>
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*>          = 1,...,N:
*>                The QZ iteration failed.  No eigenvectors have been
*>                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
*>                should be correct for j=INFO+1,...,N.
*>          > N:  errors that usually indicate LAPACK problems:
*>                =N+1: error return from DGGBAL
*>                =N+2: error return from DGEQRF
*>                =N+3: error return from DORMQR
*>                =N+4: error return from DORGQR
*>                =N+5: error return from DGGHRD
*>                =N+6: error return from DHGEQZ (other than failed
*>                                                iteration)
*>                =N+7: error return from DTGEVC
*>                =N+8: error return from DGGBAK (computing VL)
*>                =N+9: error return from DGGBAK (computing VR)
*>                =N+10: error return from DLASCL (various calls)
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup doubleGEeigen
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  Balancing
*>  ---------
*>
*>  This driver calls DGGBAL to both permute and scale rows and columns
*>  of A and B.  The permutations PL and PR are chosen so that PL*A*PR
*>  and PL*B*R will be upper triangular except for the diagonal blocks
*>  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
*>  possible.  The diagonal scaling matrices DL and DR are chosen so
*>  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
*>  one (except for the elements that start out zero.)
*>
*>  After the eigenvalues and eigenvectors of the balanced matrices
*>  have been computed, DGGBAK transforms the eigenvectors back to what
*>  they would have been (in perfect arithmetic) if they had not been
*>  balanced.
*>
*>  Contents of A and B on Exit
*>  -------- -- - --- - -- ----
*>
*>  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
*>  both), then on exit the arrays A and B will contain the real Schur
*>  form[*] of the "balanced" versions of A and B.  If no eigenvectors
*>  are computed, then only the diagonal blocks will be correct.
*>
*>  [*] See DHGEQZ, DGEGS, or read the book "Matrix Computations",
*>      by Golub & van Loan, pub. by Johns Hopkins U. Press.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE DGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
     $                  BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
*
*  -- LAPACK driver routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          JOBVL, JOBVR
      INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
     $                   B( LDB, * ), BETA( * ), VL( LDVL, * ),
     $                   VR( LDVR, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ILIMIT, ILV, ILVL, ILVR, LQUERY
      CHARACTER          CHTEMP
      INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
     $                   IN, IRIGHT, IROWS, ITAU, IWORK, JC, JR, LOPT,
     $                   LWKMIN, LWKOPT, NB, NB1, NB2, NB3
      DOUBLE PRECISION   ABSAI, ABSAR, ABSB, ANRM, ANRM1, ANRM2, BNRM,
     $                   BNRM1, BNRM2, EPS, ONEPLS, SAFMAX, SAFMIN,
     $                   SALFAI, SALFAR, SBETA, SCALE, TEMP
*     ..
*     .. Local Arrays ..
      LOGICAL            LDUMMA( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY,
     $                   DLASCL, DLASET, DORGQR, DORMQR, DTGEVC, XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      DOUBLE PRECISION   DLAMCH, DLANGE
      EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, INT, MAX
*     ..
*     .. Executable Statements ..
*
*     Decode the input arguments
*
      IF( LSAME( JOBVL, 'N' ) ) THEN
         IJOBVL = 1
         ILVL = .FALSE.
      ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
         IJOBVL = 2
         ILVL = .TRUE.
      ELSE
         IJOBVL = -1
         ILVL = .FALSE.
      END IF
*
      IF( LSAME( JOBVR, 'N' ) ) THEN
         IJOBVR = 1
         ILVR = .FALSE.
      ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
         IJOBVR = 2
         ILVR = .TRUE.
      ELSE
         IJOBVR = -1
         ILVR = .FALSE.
      END IF
      ILV = ILVL .OR. ILVR
*
*     Test the input arguments
*
      LWKMIN = MAX( 8*N, 1 )
      LWKOPT = LWKMIN
      WORK( 1 ) = LWKOPT
      LQUERY = ( LWORK.EQ.-1 )
      INFO = 0
      IF( IJOBVL.LE.0 ) THEN
         INFO = -1
      ELSE IF( IJOBVR.LE.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
         INFO = -12
      ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
         INFO = -14
      ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
         INFO = -16
      END IF
*
      IF( INFO.EQ.0 ) THEN
         NB1 = ILAENV( 1, 'DGEQRF', ' ', N, N, -1, -1 )
         NB2 = ILAENV( 1, 'DORMQR', ' ', N, N, N, -1 )
         NB3 = ILAENV( 1, 'DORGQR', ' ', N, N, N, -1 )
         NB = MAX( NB1, NB2, NB3 )
         LOPT = 2*N + MAX( 6*N, N*( NB+1 ) )
         WORK( 1 ) = LOPT
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGEGV ', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Get machine constants
*
      EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
      SAFMIN = DLAMCH( 'S' )
      SAFMIN = SAFMIN + SAFMIN
      SAFMAX = ONE / SAFMIN
      ONEPLS = ONE + ( 4*EPS )
*
*     Scale A
*
      ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
      ANRM1 = ANRM
      ANRM2 = ONE
      IF( ANRM.LT.ONE ) THEN
         IF( SAFMAX*ANRM.LT.ONE ) THEN
            ANRM1 = SAFMIN
            ANRM2 = SAFMAX*ANRM
         END IF
      END IF
*
      IF( ANRM.GT.ZERO ) THEN
         CALL DLASCL( 'G', -1, -1, ANRM, ONE, N, N, A, LDA, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 10
            RETURN
         END IF
      END IF
*
*     Scale B
*
      BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
      BNRM1 = BNRM
      BNRM2 = ONE
      IF( BNRM.LT.ONE ) THEN
         IF( SAFMAX*BNRM.LT.ONE ) THEN
            BNRM1 = SAFMIN
            BNRM2 = SAFMAX*BNRM
         END IF
      END IF
*
      IF( BNRM.GT.ZERO ) THEN
         CALL DLASCL( 'G', -1, -1, BNRM, ONE, N, N, B, LDB, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 10
            RETURN
         END IF
      END IF
*
*     Permute the matrix to make it more nearly triangular
*     Workspace layout:  (8*N words -- "work" requires 6*N words)
*        left_permutation, right_permutation, work...
*
      ILEFT = 1
      IRIGHT = N + 1
      IWORK = IRIGHT + N
      CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
     $             WORK( IRIGHT ), WORK( IWORK ), IINFO )
      IF( IINFO.NE.0 ) THEN
         INFO = N + 1
         GO TO 120
      END IF
*
*     Reduce B to triangular form, and initialize VL and/or VR
*     Workspace layout:  ("work..." must have at least N words)
*        left_permutation, right_permutation, tau, work...
*
      IROWS = IHI + 1 - ILO
      IF( ILV ) THEN
         ICOLS = N + 1 - ILO
      ELSE
         ICOLS = IROWS
      END IF
      ITAU = IWORK
      IWORK = ITAU + IROWS
      CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
     $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
      IF( IINFO.GE.0 )
     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
      IF( IINFO.NE.0 ) THEN
         INFO = N + 2
         GO TO 120
      END IF
*
      CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
     $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
     $             LWORK+1-IWORK, IINFO )
      IF( IINFO.GE.0 )
     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
      IF( IINFO.NE.0 ) THEN
         INFO = N + 3
         GO TO 120
      END IF
*
      IF( ILVL ) THEN
         CALL DLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
         CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
     $                VL( ILO+1, ILO ), LDVL )
         CALL DORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
     $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
     $                IINFO )
         IF( IINFO.GE.0 )
     $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 4
            GO TO 120
         END IF
      END IF
*
      IF( ILVR )
     $   CALL DLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
*
*     Reduce to generalized Hessenberg form
*
      IF( ILV ) THEN
*
*        Eigenvectors requested -- work on whole matrix.
*
         CALL DGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
     $                LDVL, VR, LDVR, IINFO )
      ELSE
         CALL DGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
     $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IINFO )
      END IF
      IF( IINFO.NE.0 ) THEN
         INFO = N + 5
         GO TO 120
      END IF
*
*     Perform QZ algorithm
*     Workspace layout:  ("work..." must have at least 1 word)
*        left_permutation, right_permutation, work...
*
      IWORK = ITAU
      IF( ILV ) THEN
         CHTEMP = 'S'
      ELSE
         CHTEMP = 'E'
      END IF
      CALL DHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
     $             ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
     $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
      IF( IINFO.GE.0 )
     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
      IF( IINFO.NE.0 ) THEN
         IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
            INFO = IINFO
         ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
            INFO = IINFO - N
         ELSE
            INFO = N + 6
         END IF
         GO TO 120
      END IF
*
      IF( ILV ) THEN
*
*        Compute Eigenvectors  (DTGEVC requires 6*N words of workspace)
*
         IF( ILVL ) THEN
            IF( ILVR ) THEN
               CHTEMP = 'B'
            ELSE
               CHTEMP = 'L'
            END IF
         ELSE
            CHTEMP = 'R'
         END IF
*
         CALL DTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
     $                VR, LDVR, N, IN, WORK( IWORK ), IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 7
            GO TO 120
         END IF
*
*        Undo balancing on VL and VR, rescale
*
         IF( ILVL ) THEN
            CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
     $                   WORK( IRIGHT ), N, VL, LDVL, IINFO )
            IF( IINFO.NE.0 ) THEN
               INFO = N + 8
               GO TO 120
            END IF
            DO 50 JC = 1, N
               IF( ALPHAI( JC ).LT.ZERO )
     $            GO TO 50
               TEMP = ZERO
               IF( ALPHAI( JC ).EQ.ZERO ) THEN
                  DO 10 JR = 1, N
                     TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
   10             CONTINUE
               ELSE
                  DO 20 JR = 1, N
                     TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
     $                      ABS( VL( JR, JC+1 ) ) )
   20             CONTINUE
               END IF
               IF( TEMP.LT.SAFMIN )
     $            GO TO 50
               TEMP = ONE / TEMP
               IF( ALPHAI( JC ).EQ.ZERO ) THEN
                  DO 30 JR = 1, N
                     VL( JR, JC ) = VL( JR, JC )*TEMP
   30             CONTINUE
               ELSE
                  DO 40 JR = 1, N
                     VL( JR, JC ) = VL( JR, JC )*TEMP
                     VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
   40             CONTINUE
               END IF
   50       CONTINUE
         END IF
         IF( ILVR ) THEN
            CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
     $                   WORK( IRIGHT ), N, VR, LDVR, IINFO )
            IF( IINFO.NE.0 ) THEN
               INFO = N + 9
               GO TO 120
            END IF
            DO 100 JC = 1, N
               IF( ALPHAI( JC ).LT.ZERO )
     $            GO TO 100
               TEMP = ZERO
               IF( ALPHAI( JC ).EQ.ZERO ) THEN
                  DO 60 JR = 1, N
                     TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
   60             CONTINUE
               ELSE
                  DO 70 JR = 1, N
                     TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
     $                      ABS( VR( JR, JC+1 ) ) )
   70             CONTINUE
               END IF
               IF( TEMP.LT.SAFMIN )
     $            GO TO 100
               TEMP = ONE / TEMP
               IF( ALPHAI( JC ).EQ.ZERO ) THEN
                  DO 80 JR = 1, N
                     VR( JR, JC ) = VR( JR, JC )*TEMP
   80             CONTINUE
               ELSE
                  DO 90 JR = 1, N
                     VR( JR, JC ) = VR( JR, JC )*TEMP
                     VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
   90             CONTINUE
               END IF
  100       CONTINUE
         END IF
*
*        End of eigenvector calculation
*
      END IF
*
*     Undo scaling in alpha, beta
*
*     Note: this does not give the alpha and beta for the unscaled
*     problem.
*
*     Un-scaling is limited to avoid underflow in alpha and beta
*     if they are significant.
*
      DO 110 JC = 1, N
         ABSAR = ABS( ALPHAR( JC ) )
         ABSAI = ABS( ALPHAI( JC ) )
         ABSB = ABS( BETA( JC ) )
         SALFAR = ANRM*ALPHAR( JC )
         SALFAI = ANRM*ALPHAI( JC )
         SBETA = BNRM*BETA( JC )
         ILIMIT = .FALSE.
         SCALE = ONE
*
*        Check for significant underflow in ALPHAI
*
         IF( ABS( SALFAI ).LT.SAFMIN .AND. ABSAI.GE.
     $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSB ) ) THEN
            ILIMIT = .TRUE.
            SCALE = ( ONEPLS*SAFMIN / ANRM1 ) /
     $              MAX( ONEPLS*SAFMIN, ANRM2*ABSAI )
*
         ELSE IF( SALFAI.EQ.ZERO ) THEN
*
*           If insignificant underflow in ALPHAI, then make the
*           conjugate eigenvalue real.
*
            IF( ALPHAI( JC ).LT.ZERO .AND. JC.GT.1 ) THEN
               ALPHAI( JC-1 ) = ZERO
            ELSE IF( ALPHAI( JC ).GT.ZERO .AND. JC.LT.N ) THEN
               ALPHAI( JC+1 ) = ZERO
            END IF
         END IF
*
*        Check for significant underflow in ALPHAR
*
         IF( ABS( SALFAR ).LT.SAFMIN .AND. ABSAR.GE.
     $       MAX( SAFMIN, EPS*ABSAI, EPS*ABSB ) ) THEN
            ILIMIT = .TRUE.
            SCALE = MAX( SCALE, ( ONEPLS*SAFMIN / ANRM1 ) /
     $              MAX( ONEPLS*SAFMIN, ANRM2*ABSAR ) )
         END IF
*
*        Check for significant underflow in BETA
*
         IF( ABS( SBETA ).LT.SAFMIN .AND. ABSB.GE.
     $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSAI ) ) THEN
            ILIMIT = .TRUE.
            SCALE = MAX( SCALE, ( ONEPLS*SAFMIN / BNRM1 ) /
     $              MAX( ONEPLS*SAFMIN, BNRM2*ABSB ) )
         END IF
*
*        Check for possible overflow when limiting scaling
*
         IF( ILIMIT ) THEN
            TEMP = ( SCALE*SAFMIN )*MAX( ABS( SALFAR ), ABS( SALFAI ),
     $             ABS( SBETA ) )
            IF( TEMP.GT.ONE )
     $         SCALE = SCALE / TEMP
            IF( SCALE.LT.ONE )
     $         ILIMIT = .FALSE.
         END IF
*
*        Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary.
*
         IF( ILIMIT ) THEN
            SALFAR = ( SCALE*ALPHAR( JC ) )*ANRM
            SALFAI = ( SCALE*ALPHAI( JC ) )*ANRM
            SBETA = ( SCALE*BETA( JC ) )*BNRM
         END IF
         ALPHAR( JC ) = SALFAR
         ALPHAI( JC ) = SALFAI
         BETA( JC ) = SBETA
  110 CONTINUE
*
  120 CONTINUE
      WORK( 1 ) = LWKOPT
*
      RETURN
*
*     End of DGEGV
*
      END