1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
|
*> \brief \b DBBCSD
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> Download DBBCSD + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dbbcsd.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dbbcsd.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dbbcsd.f">
*> [TXT]</a>
*
* Definition
* ==========
*
* SUBROUTINE DBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
* THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
* V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
* B22D, B22E, WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
* INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
* ..
* .. Array Arguments ..
* DOUBLE PRECISION B11D( * ), B11E( * ), B12D( * ), B12E( * ),
* $ B21D( * ), B21E( * ), B22D( * ), B22E( * ),
* $ PHI( * ), THETA( * ), WORK( * )
* DOUBLE PRECISION U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
* $ V2T( LDV2T, * )
* ..
*
* Purpose
* =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> DBBCSD computes the CS decomposition of an orthogonal matrix in
*> bidiagonal-block form,
*>
*>
*> [ B11 | B12 0 0 ]
*> [ 0 | 0 -I 0 ]
*> X = [----------------]
*> [ B21 | B22 0 0 ]
*> [ 0 | 0 0 I ]
*>
*> [ C | -S 0 0 ]
*> [ U1 | ] [ 0 | 0 -I 0 ] [ V1 | ]**T
*> = [---------] [---------------] [---------] .
*> [ | U2 ] [ S | C 0 0 ] [ | V2 ]
*> [ 0 | 0 0 I ]
*>
*> X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
*> than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
*> transposed and/or permuted. This can be done in constant time using
*> the TRANS and SIGNS options. See DORCSD for details.)
*>
*> The bidiagonal matrices B11, B12, B21, and B22 are represented
*> implicitly by angles THETA(1:Q) and PHI(1:Q-1).
*>
*> The orthogonal matrices U1, U2, V1T, and V2T are input/output.
*> The input matrices are pre- or post-multiplied by the appropriate
*> singular vector matrices.
*>
*>\endverbatim
*
* Arguments
* =========
*
*> \param[in] JOBU1
*> \verbatim
*> JOBU1 is CHARACTER
*> = 'Y': U1 is updated;
*> otherwise: U1 is not updated.
*> \endverbatim
*>
*> \param[in] JOBU2
*> \verbatim
*> JOBU2 is CHARACTER
*> = 'Y': U2 is updated;
*> otherwise: U2 is not updated.
*> \endverbatim
*>
*> \param[in] JOBV1T
*> \verbatim
*> JOBV1T is CHARACTER
*> = 'Y': V1T is updated;
*> otherwise: V1T is not updated.
*> \endverbatim
*>
*> \param[in] JOBV2T
*> \verbatim
*> JOBV2T is CHARACTER
*> = 'Y': V2T is updated;
*> otherwise: V2T is not updated.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER
*> = 'T': X, U1, U2, V1T, and V2T are stored in row-major
*> order;
*> otherwise: X, U1, U2, V1T, and V2T are stored in column-
*> major order.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows and columns in X, the orthogonal matrix in
*> bidiagonal-block form.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*> P is INTEGER
*> The number of rows in the top-left block of X. 0 <= P <= M.
*> \endverbatim
*>
*> \param[in] Q
*> \verbatim
*> Q is INTEGER
*> The number of columns in the top-left block of X.
*> 0 <= Q <= MIN(P,M-P,M-Q).
*> \endverbatim
*>
*> \param[in,out] THETA
*> \verbatim
*> THETA is DOUBLE PRECISION array, dimension (Q)
*> On entry, the angles THETA(1),...,THETA(Q) that, along with
*> PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block
*> form. On exit, the angles whose cosines and sines define the
*> diagonal blocks in the CS decomposition.
*> \endverbatim
*>
*> \param[in,out] PHI
*> \verbatim
*> PHI is DOUBLE PRECISION array, dimension (Q-1)
*> The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),...,
*> THETA(Q), define the matrix in bidiagonal-block form.
*> \endverbatim
*>
*> \param[in,out] U1
*> \verbatim
*> U1 is DOUBLE PRECISION array, dimension (LDU1,P)
*> On entry, an LDU1-by-P matrix. On exit, U1 is postmultiplied
*> by the left singular vector matrix common to [ B11 ; 0 ] and
*> [ B12 0 0 ; 0 -I 0 0 ].
*> \endverbatim
*>
*> \param[in] LDU1
*> \verbatim
*> LDU1 is INTEGER
*> The leading dimension of the array U1.
*> \endverbatim
*>
*> \param[in,out] U2
*> \verbatim
*> U2 is DOUBLE PRECISION array, dimension (LDU2,M-P)
*> On entry, an LDU2-by-(M-P) matrix. On exit, U2 is
*> postmultiplied by the left singular vector matrix common to
*> [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ].
*> \endverbatim
*>
*> \param[in] LDU2
*> \verbatim
*> LDU2 is INTEGER
*> The leading dimension of the array U2.
*> \endverbatim
*>
*> \param[in,out] V1T
*> \verbatim
*> V1T is DOUBLE PRECISION array, dimension (LDV1T,Q)
*> On entry, a LDV1T-by-Q matrix. On exit, V1T is premultiplied
*> by the transpose of the right singular vector
*> matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].
*> \endverbatim
*>
*> \param[in] LDV1T
*> \verbatim
*> LDV1T is INTEGER
*> The leading dimension of the array V1T.
*> \endverbatim
*>
*> \param[in,out] V2T
*> \verbatim
*> V2T is DOUBLE PRECISION array, dimenison (LDV2T,M-Q)
*> On entry, a LDV2T-by-(M-Q) matrix. On exit, V2T is
*> premultiplied by the transpose of the right
*> singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and
*> [ B22 0 0 ; 0 0 I ].
*> \endverbatim
*>
*> \param[in] LDV2T
*> \verbatim
*> LDV2T is INTEGER
*> The leading dimension of the array V2T.
*> \endverbatim
*>
*> \param[out] B11D
*> \verbatim
*> B11D is DOUBLE PRECISION array, dimension (Q)
*> When DBBCSD converges, B11D contains the cosines of THETA(1),
*> ..., THETA(Q). If DBBCSD fails to converge, then B11D
*> contains the diagonal of the partially reduced top-left
*> block.
*> \endverbatim
*>
*> \param[out] B11E
*> \verbatim
*> B11E is DOUBLE PRECISION array, dimension (Q-1)
*> When DBBCSD converges, B11E contains zeros. If DBBCSD fails
*> to converge, then B11E contains the superdiagonal of the
*> partially reduced top-left block.
*> \endverbatim
*>
*> \param[out] B12D
*> \verbatim
*> B12D is DOUBLE PRECISION array, dimension (Q)
*> When DBBCSD converges, B12D contains the negative sines of
*> THETA(1), ..., THETA(Q). If DBBCSD fails to converge, then
*> B12D contains the diagonal of the partially reduced top-right
*> block.
*> \endverbatim
*>
*> \param[out] B12E
*> \verbatim
*> B12E is DOUBLE PRECISION array, dimension (Q-1)
*> When DBBCSD converges, B12E contains zeros. If DBBCSD fails
*> to converge, then B12E contains the subdiagonal of the
*> partially reduced top-right block.
*> \endverbatim
*>
*> \param[out] B21D
*> \verbatim
*> B21D is DOUBLE PRECISION array, dimension (Q)
*> When CBBCSD converges, B21D contains the negative sines of
*> THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then
*> B21D contains the diagonal of the partially reduced bottom-left
*> block.
*> \endverbatim
*>
*> \param[out] B21E
*> \verbatim
*> B21E is DOUBLE PRECISION array, dimension (Q-1)
*> When CBBCSD converges, B21E contains zeros. If CBBCSD fails
*> to converge, then B21E contains the subdiagonal of the
*> partially reduced bottom-left block.
*> \endverbatim
*>
*> \param[out] B22D
*> \verbatim
*> B22D is DOUBLE PRECISION array, dimension (Q)
*> When CBBCSD converges, B22D contains the negative sines of
*> THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then
*> B22D contains the diagonal of the partially reduced bottom-right
*> block.
*> \endverbatim
*>
*> \param[out] B22E
*> \verbatim
*> B22E is DOUBLE PRECISION array, dimension (Q-1)
*> When CBBCSD converges, B22E contains zeros. If CBBCSD fails
*> to converge, then B22E contains the subdiagonal of the
*> partially reduced bottom-right block.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= MAX(1,8*Q).
*> \endverbatim
*> \verbatim
*> If LWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the WORK array,
*> returns this value as the first entry of the work array, and
*> no error message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if DBBCSD did not converge, INFO specifies the number
*> of nonzero entries in PHI, and B11D, B11E, etc.,
*> contain the partially reduced matrix.
*> \endverbatim
*> \verbatim
*> Reference
*> =========
*> \endverbatim
*> \verbatim
*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*> Algorithms, 50(1):33-65, 2009.
*> \endverbatim
*> \verbatim
*> Internal Parameters
*> ===================
*> \endverbatim
*> \verbatim
*> TOLMUL DOUBLE PRECISION, default = MAX(10,MIN(100,EPS**(-1/8)))
*> TOLMUL controls the convergence criterion of the QR loop.
*> Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
*> are within TOLMUL*EPS of either bound.
*> \endverbatim
*>
*
* Authors
* =======
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup doubleOTHERcomputational
*
* =====================================================================
SUBROUTINE DBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
$ THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
$ V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
$ B22D, B22E, WORK, LWORK, INFO )
*
* -- LAPACK computational routine (version 3.3.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
* ..
* .. Array Arguments ..
DOUBLE PRECISION B11D( * ), B11E( * ), B12D( * ), B12E( * ),
$ B21D( * ), B21E( * ), B22D( * ), B22E( * ),
$ PHI( * ), THETA( * ), WORK( * )
DOUBLE PRECISION U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
$ V2T( LDV2T, * )
* ..
*
* ===================================================================
*
* .. Parameters ..
INTEGER MAXITR
PARAMETER ( MAXITR = 6 )
DOUBLE PRECISION HUNDRED, MEIGHTH, ONE, PIOVER2, TEN, ZERO
PARAMETER ( HUNDRED = 100.0D0, MEIGHTH = -0.125D0,
$ ONE = 1.0D0, PIOVER2 = 1.57079632679489662D0,
$ TEN = 10.0D0, ZERO = 0.0D0 )
DOUBLE PRECISION NEGONECOMPLEX
PARAMETER ( NEGONECOMPLEX = -1.0D0 )
* ..
* .. Local Scalars ..
LOGICAL COLMAJOR, LQUERY, RESTART11, RESTART12,
$ RESTART21, RESTART22, WANTU1, WANTU2, WANTV1T,
$ WANTV2T
INTEGER I, IMIN, IMAX, ITER, IU1CS, IU1SN, IU2CS,
$ IU2SN, IV1TCS, IV1TSN, IV2TCS, IV2TSN, J,
$ LWORKMIN, LWORKOPT, MAXIT, MINI
DOUBLE PRECISION B11BULGE, B12BULGE, B21BULGE, B22BULGE, DUMMY,
$ EPS, MU, NU, R, SIGMA11, SIGMA21,
$ TEMP, THETAMAX, THETAMIN, THRESH, TOL, TOLMUL,
$ UNFL, X1, X2, Y1, Y2
*
* .. External Subroutines ..
EXTERNAL DLASR, DSCAL, DSWAP, DLARTGP, DLARTGS, DLAS2,
$ XERBLA
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
LOGICAL LSAME
EXTERNAL LSAME, DLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, ATAN2, COS, MAX, MIN, SIN, SQRT
* ..
* .. Executable Statements ..
*
* Test input arguments
*
INFO = 0
LQUERY = LWORK .EQ. -1
WANTU1 = LSAME( JOBU1, 'Y' )
WANTU2 = LSAME( JOBU2, 'Y' )
WANTV1T = LSAME( JOBV1T, 'Y' )
WANTV2T = LSAME( JOBV2T, 'Y' )
COLMAJOR = .NOT. LSAME( TRANS, 'T' )
*
IF( M .LT. 0 ) THEN
INFO = -6
ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
INFO = -7
ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
INFO = -8
ELSE IF( Q .GT. P .OR. Q .GT. M-P .OR. Q .GT. M-Q ) THEN
INFO = -8
ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
INFO = -12
ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
INFO = -14
ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
INFO = -16
ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
INFO = -18
END IF
*
* Quick return if Q = 0
*
IF( INFO .EQ. 0 .AND. Q .EQ. 0 ) THEN
LWORKMIN = 1
WORK(1) = LWORKMIN
RETURN
END IF
*
* Compute workspace
*
IF( INFO .EQ. 0 ) THEN
IU1CS = 1
IU1SN = IU1CS + Q
IU2CS = IU1SN + Q
IU2SN = IU2CS + Q
IV1TCS = IU2SN + Q
IV1TSN = IV1TCS + Q
IV2TCS = IV1TSN + Q
IV2TSN = IV2TCS + Q
LWORKOPT = IV2TSN + Q - 1
LWORKMIN = LWORKOPT
WORK(1) = LWORKOPT
IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
INFO = -28
END IF
END IF
*
IF( INFO .NE. 0 ) THEN
CALL XERBLA( 'DBBCSD', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Get machine constants
*
EPS = DLAMCH( 'Epsilon' )
UNFL = DLAMCH( 'Safe minimum' )
TOLMUL = MAX( TEN, MIN( HUNDRED, EPS**MEIGHTH ) )
TOL = TOLMUL*EPS
THRESH = MAX( TOL, MAXITR*Q*Q*UNFL )
*
* Test for negligible sines or cosines
*
DO I = 1, Q
IF( THETA(I) .LT. THRESH ) THEN
THETA(I) = ZERO
ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
THETA(I) = PIOVER2
END IF
END DO
DO I = 1, Q-1
IF( PHI(I) .LT. THRESH ) THEN
PHI(I) = ZERO
ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
PHI(I) = PIOVER2
END IF
END DO
*
* Initial deflation
*
IMAX = Q
DO WHILE( ( IMAX .GT. 1 ) .AND. ( PHI(IMAX-1) .EQ. ZERO ) )
IMAX = IMAX - 1
END DO
IMIN = IMAX - 1
IF ( IMIN .GT. 1 ) THEN
DO WHILE( PHI(IMIN-1) .NE. ZERO )
IMIN = IMIN - 1
IF ( IMIN .LE. 1 ) EXIT
END DO
END IF
*
* Initialize iteration counter
*
MAXIT = MAXITR*Q*Q
ITER = 0
*
* Begin main iteration loop
*
DO WHILE( IMAX .GT. 1 )
*
* Compute the matrix entries
*
B11D(IMIN) = COS( THETA(IMIN) )
B21D(IMIN) = -SIN( THETA(IMIN) )
DO I = IMIN, IMAX - 1
B11E(I) = -SIN( THETA(I) ) * SIN( PHI(I) )
B11D(I+1) = COS( THETA(I+1) ) * COS( PHI(I) )
B12D(I) = SIN( THETA(I) ) * COS( PHI(I) )
B12E(I) = COS( THETA(I+1) ) * SIN( PHI(I) )
B21E(I) = -COS( THETA(I) ) * SIN( PHI(I) )
B21D(I+1) = -SIN( THETA(I+1) ) * COS( PHI(I) )
B22D(I) = COS( THETA(I) ) * COS( PHI(I) )
B22E(I) = -SIN( THETA(I+1) ) * SIN( PHI(I) )
END DO
B12D(IMAX) = SIN( THETA(IMAX) )
B22D(IMAX) = COS( THETA(IMAX) )
*
* Abort if not converging; otherwise, increment ITER
*
IF( ITER .GT. MAXIT ) THEN
INFO = 0
DO I = 1, Q
IF( PHI(I) .NE. ZERO )
$ INFO = INFO + 1
END DO
RETURN
END IF
*
ITER = ITER + IMAX - IMIN
*
* Compute shifts
*
THETAMAX = THETA(IMIN)
THETAMIN = THETA(IMIN)
DO I = IMIN+1, IMAX
IF( THETA(I) > THETAMAX )
$ THETAMAX = THETA(I)
IF( THETA(I) < THETAMIN )
$ THETAMIN = THETA(I)
END DO
*
IF( THETAMAX .GT. PIOVER2 - THRESH ) THEN
*
* Zero on diagonals of B11 and B22; induce deflation with a
* zero shift
*
MU = ZERO
NU = ONE
*
ELSE IF( THETAMIN .LT. THRESH ) THEN
*
* Zero on diagonals of B12 and B22; induce deflation with a
* zero shift
*
MU = ONE
NU = ZERO
*
ELSE
*
* Compute shifts for B11 and B21 and use the lesser
*
CALL DLAS2( B11D(IMAX-1), B11E(IMAX-1), B11D(IMAX), SIGMA11,
$ DUMMY )
CALL DLAS2( B21D(IMAX-1), B21E(IMAX-1), B21D(IMAX), SIGMA21,
$ DUMMY )
*
IF( SIGMA11 .LE. SIGMA21 ) THEN
MU = SIGMA11
NU = SQRT( ONE - MU**2 )
IF( MU .LT. THRESH ) THEN
MU = ZERO
NU = ONE
END IF
ELSE
NU = SIGMA21
MU = SQRT( 1.0 - NU**2 )
IF( NU .LT. THRESH ) THEN
MU = ONE
NU = ZERO
END IF
END IF
END IF
*
* Rotate to produce bulges in B11 and B21
*
IF( MU .LE. NU ) THEN
CALL DLARTGS( B11D(IMIN), B11E(IMIN), MU,
$ WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1) )
ELSE
CALL DLARTGS( B21D(IMIN), B21E(IMIN), NU,
$ WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1) )
END IF
*
TEMP = WORK(IV1TCS+IMIN-1)*B11D(IMIN) +
$ WORK(IV1TSN+IMIN-1)*B11E(IMIN)
B11E(IMIN) = WORK(IV1TCS+IMIN-1)*B11E(IMIN) -
$ WORK(IV1TSN+IMIN-1)*B11D(IMIN)
B11D(IMIN) = TEMP
B11BULGE = WORK(IV1TSN+IMIN-1)*B11D(IMIN+1)
B11D(IMIN+1) = WORK(IV1TCS+IMIN-1)*B11D(IMIN+1)
TEMP = WORK(IV1TCS+IMIN-1)*B21D(IMIN) +
$ WORK(IV1TSN+IMIN-1)*B21E(IMIN)
B21E(IMIN) = WORK(IV1TCS+IMIN-1)*B21E(IMIN) -
$ WORK(IV1TSN+IMIN-1)*B21D(IMIN)
B21D(IMIN) = TEMP
B21BULGE = WORK(IV1TSN+IMIN-1)*B21D(IMIN+1)
B21D(IMIN+1) = WORK(IV1TCS+IMIN-1)*B21D(IMIN+1)
*
* Compute THETA(IMIN)
*
THETA( IMIN ) = ATAN2( SQRT( B21D(IMIN)**2+B21BULGE**2 ),
$ SQRT( B11D(IMIN)**2+B11BULGE**2 ) )
*
* Chase the bulges in B11(IMIN+1,IMIN) and B21(IMIN+1,IMIN)
*
IF( B11D(IMIN)**2+B11BULGE**2 .GT. THRESH**2 ) THEN
CALL DLARTGP( B11BULGE, B11D(IMIN), WORK(IU1SN+IMIN-1),
$ WORK(IU1CS+IMIN-1), R )
ELSE IF( MU .LE. NU ) THEN
CALL DLARTGS( B11E( IMIN ), B11D( IMIN + 1 ), MU,
$ WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1) )
ELSE
CALL DLARTGS( B12D( IMIN ), B12E( IMIN ), NU,
$ WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1) )
END IF
IF( B21D(IMIN)**2+B21BULGE**2 .GT. THRESH**2 ) THEN
CALL DLARTGP( B21BULGE, B21D(IMIN), WORK(IU2SN+IMIN-1),
$ WORK(IU2CS+IMIN-1), R )
ELSE IF( NU .LT. MU ) THEN
CALL DLARTGS( B21E( IMIN ), B21D( IMIN + 1 ), NU,
$ WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1) )
ELSE
CALL DLARTGS( B22D(IMIN), B22E(IMIN), MU,
$ WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1) )
END IF
WORK(IU2CS+IMIN-1) = -WORK(IU2CS+IMIN-1)
WORK(IU2SN+IMIN-1) = -WORK(IU2SN+IMIN-1)
*
TEMP = WORK(IU1CS+IMIN-1)*B11E(IMIN) +
$ WORK(IU1SN+IMIN-1)*B11D(IMIN+1)
B11D(IMIN+1) = WORK(IU1CS+IMIN-1)*B11D(IMIN+1) -
$ WORK(IU1SN+IMIN-1)*B11E(IMIN)
B11E(IMIN) = TEMP
IF( IMAX .GT. IMIN+1 ) THEN
B11BULGE = WORK(IU1SN+IMIN-1)*B11E(IMIN+1)
B11E(IMIN+1) = WORK(IU1CS+IMIN-1)*B11E(IMIN+1)
END IF
TEMP = WORK(IU1CS+IMIN-1)*B12D(IMIN) +
$ WORK(IU1SN+IMIN-1)*B12E(IMIN)
B12E(IMIN) = WORK(IU1CS+IMIN-1)*B12E(IMIN) -
$ WORK(IU1SN+IMIN-1)*B12D(IMIN)
B12D(IMIN) = TEMP
B12BULGE = WORK(IU1SN+IMIN-1)*B12D(IMIN+1)
B12D(IMIN+1) = WORK(IU1CS+IMIN-1)*B12D(IMIN+1)
TEMP = WORK(IU2CS+IMIN-1)*B21E(IMIN) +
$ WORK(IU2SN+IMIN-1)*B21D(IMIN+1)
B21D(IMIN+1) = WORK(IU2CS+IMIN-1)*B21D(IMIN+1) -
$ WORK(IU2SN+IMIN-1)*B21E(IMIN)
B21E(IMIN) = TEMP
IF( IMAX .GT. IMIN+1 ) THEN
B21BULGE = WORK(IU2SN+IMIN-1)*B21E(IMIN+1)
B21E(IMIN+1) = WORK(IU2CS+IMIN-1)*B21E(IMIN+1)
END IF
TEMP = WORK(IU2CS+IMIN-1)*B22D(IMIN) +
$ WORK(IU2SN+IMIN-1)*B22E(IMIN)
B22E(IMIN) = WORK(IU2CS+IMIN-1)*B22E(IMIN) -
$ WORK(IU2SN+IMIN-1)*B22D(IMIN)
B22D(IMIN) = TEMP
B22BULGE = WORK(IU2SN+IMIN-1)*B22D(IMIN+1)
B22D(IMIN+1) = WORK(IU2CS+IMIN-1)*B22D(IMIN+1)
*
* Inner loop: chase bulges from B11(IMIN,IMIN+2),
* B12(IMIN,IMIN+1), B21(IMIN,IMIN+2), and B22(IMIN,IMIN+1) to
* bottom-right
*
DO I = IMIN+1, IMAX-1
*
* Compute PHI(I-1)
*
X1 = SIN(THETA(I-1))*B11E(I-1) + COS(THETA(I-1))*B21E(I-1)
X2 = SIN(THETA(I-1))*B11BULGE + COS(THETA(I-1))*B21BULGE
Y1 = SIN(THETA(I-1))*B12D(I-1) + COS(THETA(I-1))*B22D(I-1)
Y2 = SIN(THETA(I-1))*B12BULGE + COS(THETA(I-1))*B22BULGE
*
PHI(I-1) = ATAN2( SQRT(X1**2+X2**2), SQRT(Y1**2+Y2**2) )
*
* Determine if there are bulges to chase or if a new direct
* summand has been reached
*
RESTART11 = B11E(I-1)**2 + B11BULGE**2 .LE. THRESH**2
RESTART21 = B21E(I-1)**2 + B21BULGE**2 .LE. THRESH**2
RESTART12 = B12D(I-1)**2 + B12BULGE**2 .LE. THRESH**2
RESTART22 = B22D(I-1)**2 + B22BULGE**2 .LE. THRESH**2
*
* If possible, chase bulges from B11(I-1,I+1), B12(I-1,I),
* B21(I-1,I+1), and B22(I-1,I). If necessary, restart bulge-
* chasing by applying the original shift again.
*
IF( .NOT. RESTART11 .AND. .NOT. RESTART21 ) THEN
CALL DLARTGP( X2, X1, WORK(IV1TSN+I-1), WORK(IV1TCS+I-1),
$ R )
ELSE IF( .NOT. RESTART11 .AND. RESTART21 ) THEN
CALL DLARTGP( B11BULGE, B11E(I-1), WORK(IV1TSN+I-1),
$ WORK(IV1TCS+I-1), R )
ELSE IF( RESTART11 .AND. .NOT. RESTART21 ) THEN
CALL DLARTGP( B21BULGE, B21E(I-1), WORK(IV1TSN+I-1),
$ WORK(IV1TCS+I-1), R )
ELSE IF( MU .LE. NU ) THEN
CALL DLARTGS( B11D(I), B11E(I), MU, WORK(IV1TCS+I-1),
$ WORK(IV1TSN+I-1) )
ELSE
CALL DLARTGS( B21D(I), B21E(I), NU, WORK(IV1TCS+I-1),
$ WORK(IV1TSN+I-1) )
END IF
WORK(IV1TCS+I-1) = -WORK(IV1TCS+I-1)
WORK(IV1TSN+I-1) = -WORK(IV1TSN+I-1)
IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
CALL DLARTGP( Y2, Y1, WORK(IV2TSN+I-1-1),
$ WORK(IV2TCS+I-1-1), R )
ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
CALL DLARTGP( B12BULGE, B12D(I-1), WORK(IV2TSN+I-1-1),
$ WORK(IV2TCS+I-1-1), R )
ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
CALL DLARTGP( B22BULGE, B22D(I-1), WORK(IV2TSN+I-1-1),
$ WORK(IV2TCS+I-1-1), R )
ELSE IF( NU .LT. MU ) THEN
CALL DLARTGS( B12E(I-1), B12D(I), NU, WORK(IV2TCS+I-1-1),
$ WORK(IV2TSN+I-1-1) )
ELSE
CALL DLARTGS( B22E(I-1), B22D(I), MU, WORK(IV2TCS+I-1-1),
$ WORK(IV2TSN+I-1-1) )
END IF
*
TEMP = WORK(IV1TCS+I-1)*B11D(I) + WORK(IV1TSN+I-1)*B11E(I)
B11E(I) = WORK(IV1TCS+I-1)*B11E(I) -
$ WORK(IV1TSN+I-1)*B11D(I)
B11D(I) = TEMP
B11BULGE = WORK(IV1TSN+I-1)*B11D(I+1)
B11D(I+1) = WORK(IV1TCS+I-1)*B11D(I+1)
TEMP = WORK(IV1TCS+I-1)*B21D(I) + WORK(IV1TSN+I-1)*B21E(I)
B21E(I) = WORK(IV1TCS+I-1)*B21E(I) -
$ WORK(IV1TSN+I-1)*B21D(I)
B21D(I) = TEMP
B21BULGE = WORK(IV1TSN+I-1)*B21D(I+1)
B21D(I+1) = WORK(IV1TCS+I-1)*B21D(I+1)
TEMP = WORK(IV2TCS+I-1-1)*B12E(I-1) +
$ WORK(IV2TSN+I-1-1)*B12D(I)
B12D(I) = WORK(IV2TCS+I-1-1)*B12D(I) -
$ WORK(IV2TSN+I-1-1)*B12E(I-1)
B12E(I-1) = TEMP
B12BULGE = WORK(IV2TSN+I-1-1)*B12E(I)
B12E(I) = WORK(IV2TCS+I-1-1)*B12E(I)
TEMP = WORK(IV2TCS+I-1-1)*B22E(I-1) +
$ WORK(IV2TSN+I-1-1)*B22D(I)
B22D(I) = WORK(IV2TCS+I-1-1)*B22D(I) -
$ WORK(IV2TSN+I-1-1)*B22E(I-1)
B22E(I-1) = TEMP
B22BULGE = WORK(IV2TSN+I-1-1)*B22E(I)
B22E(I) = WORK(IV2TCS+I-1-1)*B22E(I)
*
* Compute THETA(I)
*
X1 = COS(PHI(I-1))*B11D(I) + SIN(PHI(I-1))*B12E(I-1)
X2 = COS(PHI(I-1))*B11BULGE + SIN(PHI(I-1))*B12BULGE
Y1 = COS(PHI(I-1))*B21D(I) + SIN(PHI(I-1))*B22E(I-1)
Y2 = COS(PHI(I-1))*B21BULGE + SIN(PHI(I-1))*B22BULGE
*
THETA(I) = ATAN2( SQRT(Y1**2+Y2**2), SQRT(X1**2+X2**2) )
*
* Determine if there are bulges to chase or if a new direct
* summand has been reached
*
RESTART11 = B11D(I)**2 + B11BULGE**2 .LE. THRESH**2
RESTART12 = B12E(I-1)**2 + B12BULGE**2 .LE. THRESH**2
RESTART21 = B21D(I)**2 + B21BULGE**2 .LE. THRESH**2
RESTART22 = B22E(I-1)**2 + B22BULGE**2 .LE. THRESH**2
*
* If possible, chase bulges from B11(I+1,I), B12(I+1,I-1),
* B21(I+1,I), and B22(I+1,I-1). If necessary, restart bulge-
* chasing by applying the original shift again.
*
IF( .NOT. RESTART11 .AND. .NOT. RESTART12 ) THEN
CALL DLARTGP( X2, X1, WORK(IU1SN+I-1), WORK(IU1CS+I-1),
$ R )
ELSE IF( .NOT. RESTART11 .AND. RESTART12 ) THEN
CALL DLARTGP( B11BULGE, B11D(I), WORK(IU1SN+I-1),
$ WORK(IU1CS+I-1), R )
ELSE IF( RESTART11 .AND. .NOT. RESTART12 ) THEN
CALL DLARTGP( B12BULGE, B12E(I-1), WORK(IU1SN+I-1),
$ WORK(IU1CS+I-1), R )
ELSE IF( MU .LE. NU ) THEN
CALL DLARTGS( B11E(I), B11D(I+1), MU, WORK(IU1CS+I-1),
$ WORK(IU1SN+I-1) )
ELSE
CALL DLARTGS( B12D(I), B12E(I), NU, WORK(IU1CS+I-1),
$ WORK(IU1SN+I-1) )
END IF
IF( .NOT. RESTART21 .AND. .NOT. RESTART22 ) THEN
CALL DLARTGP( Y2, Y1, WORK(IU2SN+I-1), WORK(IU2CS+I-1),
$ R )
ELSE IF( .NOT. RESTART21 .AND. RESTART22 ) THEN
CALL DLARTGP( B21BULGE, B21D(I), WORK(IU2SN+I-1),
$ WORK(IU2CS+I-1), R )
ELSE IF( RESTART21 .AND. .NOT. RESTART22 ) THEN
CALL DLARTGP( B22BULGE, B22E(I-1), WORK(IU2SN+I-1),
$ WORK(IU2CS+I-1), R )
ELSE IF( NU .LT. MU ) THEN
CALL DLARTGS( B21E(I), B21E(I+1), NU, WORK(IU2CS+I-1),
$ WORK(IU2SN+I-1) )
ELSE
CALL DLARTGS( B22D(I), B22E(I), MU, WORK(IU2CS+I-1),
$ WORK(IU2SN+I-1) )
END IF
WORK(IU2CS+I-1) = -WORK(IU2CS+I-1)
WORK(IU2SN+I-1) = -WORK(IU2SN+I-1)
*
TEMP = WORK(IU1CS+I-1)*B11E(I) + WORK(IU1SN+I-1)*B11D(I+1)
B11D(I+1) = WORK(IU1CS+I-1)*B11D(I+1) -
$ WORK(IU1SN+I-1)*B11E(I)
B11E(I) = TEMP
IF( I .LT. IMAX - 1 ) THEN
B11BULGE = WORK(IU1SN+I-1)*B11E(I+1)
B11E(I+1) = WORK(IU1CS+I-1)*B11E(I+1)
END IF
TEMP = WORK(IU2CS+I-1)*B21E(I) + WORK(IU2SN+I-1)*B21D(I+1)
B21D(I+1) = WORK(IU2CS+I-1)*B21D(I+1) -
$ WORK(IU2SN+I-1)*B21E(I)
B21E(I) = TEMP
IF( I .LT. IMAX - 1 ) THEN
B21BULGE = WORK(IU2SN+I-1)*B21E(I+1)
B21E(I+1) = WORK(IU2CS+I-1)*B21E(I+1)
END IF
TEMP = WORK(IU1CS+I-1)*B12D(I) + WORK(IU1SN+I-1)*B12E(I)
B12E(I) = WORK(IU1CS+I-1)*B12E(I) - WORK(IU1SN+I-1)*B12D(I)
B12D(I) = TEMP
B12BULGE = WORK(IU1SN+I-1)*B12D(I+1)
B12D(I+1) = WORK(IU1CS+I-1)*B12D(I+1)
TEMP = WORK(IU2CS+I-1)*B22D(I) + WORK(IU2SN+I-1)*B22E(I)
B22E(I) = WORK(IU2CS+I-1)*B22E(I) - WORK(IU2SN+I-1)*B22D(I)
B22D(I) = TEMP
B22BULGE = WORK(IU2SN+I-1)*B22D(I+1)
B22D(I+1) = WORK(IU2CS+I-1)*B22D(I+1)
*
END DO
*
* Compute PHI(IMAX-1)
*
X1 = SIN(THETA(IMAX-1))*B11E(IMAX-1) +
$ COS(THETA(IMAX-1))*B21E(IMAX-1)
Y1 = SIN(THETA(IMAX-1))*B12D(IMAX-1) +
$ COS(THETA(IMAX-1))*B22D(IMAX-1)
Y2 = SIN(THETA(IMAX-1))*B12BULGE + COS(THETA(IMAX-1))*B22BULGE
*
PHI(IMAX-1) = ATAN2( ABS(X1), SQRT(Y1**2+Y2**2) )
*
* Chase bulges from B12(IMAX-1,IMAX) and B22(IMAX-1,IMAX)
*
RESTART12 = B12D(IMAX-1)**2 + B12BULGE**2 .LE. THRESH**2
RESTART22 = B22D(IMAX-1)**2 + B22BULGE**2 .LE. THRESH**2
*
IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
CALL DLARTGP( Y2, Y1, WORK(IV2TSN+IMAX-1-1),
$ WORK(IV2TCS+IMAX-1-1), R )
ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
CALL DLARTGP( B12BULGE, B12D(IMAX-1), WORK(IV2TSN+IMAX-1-1),
$ WORK(IV2TCS+IMAX-1-1), R )
ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
CALL DLARTGP( B22BULGE, B22D(IMAX-1), WORK(IV2TSN+IMAX-1-1),
$ WORK(IV2TCS+IMAX-1-1), R )
ELSE IF( NU .LT. MU ) THEN
CALL DLARTGS( B12E(IMAX-1), B12D(IMAX), NU,
$ WORK(IV2TCS+IMAX-1-1), WORK(IV2TSN+IMAX-1-1) )
ELSE
CALL DLARTGS( B22E(IMAX-1), B22D(IMAX), MU,
$ WORK(IV2TCS+IMAX-1-1), WORK(IV2TSN+IMAX-1-1) )
END IF
*
TEMP = WORK(IV2TCS+IMAX-1-1)*B12E(IMAX-1) +
$ WORK(IV2TSN+IMAX-1-1)*B12D(IMAX)
B12D(IMAX) = WORK(IV2TCS+IMAX-1-1)*B12D(IMAX) -
$ WORK(IV2TSN+IMAX-1-1)*B12E(IMAX-1)
B12E(IMAX-1) = TEMP
TEMP = WORK(IV2TCS+IMAX-1-1)*B22E(IMAX-1) +
$ WORK(IV2TSN+IMAX-1-1)*B22D(IMAX)
B22D(IMAX) = WORK(IV2TCS+IMAX-1-1)*B22D(IMAX) -
$ WORK(IV2TSN+IMAX-1-1)*B22E(IMAX-1)
B22E(IMAX-1) = TEMP
*
* Update singular vectors
*
IF( WANTU1 ) THEN
IF( COLMAJOR ) THEN
CALL DLASR( 'R', 'V', 'F', P, IMAX-IMIN+1,
$ WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1),
$ U1(1,IMIN), LDU1 )
ELSE
CALL DLASR( 'L', 'V', 'F', IMAX-IMIN+1, P,
$ WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1),
$ U1(IMIN,1), LDU1 )
END IF
END IF
IF( WANTU2 ) THEN
IF( COLMAJOR ) THEN
CALL DLASR( 'R', 'V', 'F', M-P, IMAX-IMIN+1,
$ WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1),
$ U2(1,IMIN), LDU2 )
ELSE
CALL DLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-P,
$ WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1),
$ U2(IMIN,1), LDU2 )
END IF
END IF
IF( WANTV1T ) THEN
IF( COLMAJOR ) THEN
CALL DLASR( 'L', 'V', 'F', IMAX-IMIN+1, Q,
$ WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1),
$ V1T(IMIN,1), LDV1T )
ELSE
CALL DLASR( 'R', 'V', 'F', Q, IMAX-IMIN+1,
$ WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1),
$ V1T(1,IMIN), LDV1T )
END IF
END IF
IF( WANTV2T ) THEN
IF( COLMAJOR ) THEN
CALL DLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-Q,
$ WORK(IV2TCS+IMIN-1), WORK(IV2TSN+IMIN-1),
$ V2T(IMIN,1), LDV2T )
ELSE
CALL DLASR( 'R', 'V', 'F', M-Q, IMAX-IMIN+1,
$ WORK(IV2TCS+IMIN-1), WORK(IV2TSN+IMIN-1),
$ V2T(1,IMIN), LDV2T )
END IF
END IF
*
* Fix signs on B11(IMAX-1,IMAX) and B21(IMAX-1,IMAX)
*
IF( B11E(IMAX-1)+B21E(IMAX-1) .GT. 0 ) THEN
B11D(IMAX) = -B11D(IMAX)
B21D(IMAX) = -B21D(IMAX)
IF( WANTV1T ) THEN
IF( COLMAJOR ) THEN
CALL DSCAL( Q, NEGONECOMPLEX, V1T(IMAX,1), LDV1T )
ELSE
CALL DSCAL( Q, NEGONECOMPLEX, V1T(1,IMAX), 1 )
END IF
END IF
END IF
*
* Compute THETA(IMAX)
*
X1 = COS(PHI(IMAX-1))*B11D(IMAX) +
$ SIN(PHI(IMAX-1))*B12E(IMAX-1)
Y1 = COS(PHI(IMAX-1))*B21D(IMAX) +
$ SIN(PHI(IMAX-1))*B22E(IMAX-1)
*
THETA(IMAX) = ATAN2( ABS(Y1), ABS(X1) )
*
* Fix signs on B11(IMAX,IMAX), B12(IMAX,IMAX-1), B21(IMAX,IMAX),
* and B22(IMAX,IMAX-1)
*
IF( B11D(IMAX)+B12E(IMAX-1) .LT. 0 ) THEN
B12D(IMAX) = -B12D(IMAX)
IF( WANTU1 ) THEN
IF( COLMAJOR ) THEN
CALL DSCAL( P, NEGONECOMPLEX, U1(1,IMAX), 1 )
ELSE
CALL DSCAL( P, NEGONECOMPLEX, U1(IMAX,1), LDU1 )
END IF
END IF
END IF
IF( B21D(IMAX)+B22E(IMAX-1) .GT. 0 ) THEN
B22D(IMAX) = -B22D(IMAX)
IF( WANTU2 ) THEN
IF( COLMAJOR ) THEN
CALL DSCAL( M-P, NEGONECOMPLEX, U2(1,IMAX), 1 )
ELSE
CALL DSCAL( M-P, NEGONECOMPLEX, U2(IMAX,1), LDU2 )
END IF
END IF
END IF
*
* Fix signs on B12(IMAX,IMAX) and B22(IMAX,IMAX)
*
IF( B12D(IMAX)+B22D(IMAX) .LT. 0 ) THEN
IF( WANTV2T ) THEN
IF( COLMAJOR ) THEN
CALL DSCAL( M-Q, NEGONECOMPLEX, V2T(IMAX,1), LDV2T )
ELSE
CALL DSCAL( M-Q, NEGONECOMPLEX, V2T(1,IMAX), 1 )
END IF
END IF
END IF
*
* Test for negligible sines or cosines
*
DO I = IMIN, IMAX
IF( THETA(I) .LT. THRESH ) THEN
THETA(I) = ZERO
ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
THETA(I) = PIOVER2
END IF
END DO
DO I = IMIN, IMAX-1
IF( PHI(I) .LT. THRESH ) THEN
PHI(I) = ZERO
ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
PHI(I) = PIOVER2
END IF
END DO
*
* Deflate
*
IF (IMAX .GT. 1) THEN
DO WHILE( PHI(IMAX-1) .EQ. ZERO )
IMAX = IMAX - 1
IF (IMAX .LE. 1) EXIT
END DO
END IF
IF( IMIN .GT. IMAX - 1 )
$ IMIN = IMAX - 1
IF (IMIN .GT. 1) THEN
DO WHILE (PHI(IMIN-1) .NE. ZERO)
IMIN = IMIN - 1
IF (IMIN .LE. 1) EXIT
END DO
END IF
*
* Repeat main iteration loop
*
END DO
*
* Postprocessing: order THETA from least to greatest
*
DO I = 1, Q
*
MINI = I
THETAMIN = THETA(I)
DO J = I+1, Q
IF( THETA(J) .LT. THETAMIN ) THEN
MINI = J
THETAMIN = THETA(J)
END IF
END DO
*
IF( MINI .NE. I ) THEN
THETA(MINI) = THETA(I)
THETA(I) = THETAMIN
IF( COLMAJOR ) THEN
IF( WANTU1 )
$ CALL DSWAP( P, U1(1,I), 1, U1(1,MINI), 1 )
IF( WANTU2 )
$ CALL DSWAP( M-P, U2(1,I), 1, U2(1,MINI), 1 )
IF( WANTV1T )
$ CALL DSWAP( Q, V1T(I,1), LDV1T, V1T(MINI,1), LDV1T )
IF( WANTV2T )
$ CALL DSWAP( M-Q, V2T(I,1), LDV2T, V2T(MINI,1),
$ LDV2T )
ELSE
IF( WANTU1 )
$ CALL DSWAP( P, U1(I,1), LDU1, U1(MINI,1), LDU1 )
IF( WANTU2 )
$ CALL DSWAP( M-P, U2(I,1), LDU2, U2(MINI,1), LDU2 )
IF( WANTV1T )
$ CALL DSWAP( Q, V1T(1,I), 1, V1T(1,MINI), 1 )
IF( WANTV2T )
$ CALL DSWAP( M-Q, V2T(1,I), 1, V2T(1,MINI), 1 )
END IF
END IF
*
END DO
*
RETURN
*
* End of DBBCSD
*
END
|