summaryrefslogtreecommitdiff
path: root/SRC/csytrs_3.f
blob: 17e54aad8438fb0fa1966c74fcd315c0ebef4e9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
*> \brief \b CSYTRS_3
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CSYTRS_3 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csytrs_3.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csytrs_3.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csytrs_3.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CSYTRS_3( UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB,
*                            INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, LDA, LDB, N, NRHS
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       COMPLEX            A( LDA, * ), B( LDB, * ), E( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*> CSYTRS_3 solves a system of linear equations A * X = B with a complex
*> symmetric matrix A using the factorization computed
*> by CSYTRF_RK or CSYTRF_BK:
*>
*>    A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
*>
*> where U (or L) is unit upper (or lower) triangular matrix,
*> U**T (or L**T) is the transpose of U (or L), P is a permutation
*> matrix, P**T is the transpose of P, and D is symmetric and block
*> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
*>
*> This algorithm is using Level 3 BLAS.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the details of the factorization are
*>          stored as an upper or lower triangular matrix:
*>          = 'U':  Upper triangular, form is A = P*U*D*(U**T)*(P**T);
*>          = 'L':  Lower triangular, form is A = P*L*D*(L**T)*(P**T).
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrix B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          Diagonal of the block diagonal matrix D and factors U or L
*>          as computed by CSYTRF_RK and CSYTRF_BK:
*>            a) ONLY diagonal elements of the symmetric block diagonal
*>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
*>               (superdiagonal (or subdiagonal) elements of D
*>                should be provided on entry in array E), and
*>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
*>               If UPLO = 'L': factor L in the subdiagonal part of A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*>          E is COMPLEX array, dimension (N)
*>          On entry, contains the superdiagonal (or subdiagonal)
*>          elements of the symmetric block diagonal matrix D
*>          with 1-by-1 or 2-by-2 diagonal blocks, where
*>          If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not refernced;
*>          If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
*>
*>          NOTE: For 1-by-1 diagonal block D(k), where
*>          1 <= k <= N, the element E(k) is not referenced in both
*>          UPLO = 'U' or UPLO = 'L' cases.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          Details of the interchanges and the block structure of D
*>          as determined by CSYTRF_RK or CSYTRF_BK.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is COMPLEX array, dimension (LDB,NRHS)
*>          On entry, the right hand side matrix B.
*>          On exit, the solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2016
*
*> \ingroup complexSYcomputational
*
*> \par Contributors:
*  ==================
*>
*> \verbatim
*>
*>  November 2016,  Igor Kozachenko,
*>                  Computer Science Division,
*>                  University of California, Berkeley
*>
*>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
*>                  School of Mathematics,
*>                  University of Manchester
*>
*> \endverbatim
*
*  =====================================================================
      SUBROUTINE CSYTRS_3( UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB,
     $                     INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2016
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            A( LDA, * ), B( LDB, * ), E( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE
      PARAMETER          ( ONE = ( 1.0E+0,0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, J, K, KP
      COMPLEX            AK, AKM1, AKM1K, BK, BKM1, DENOM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CSCAL, CSWAP, CTRSM, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CSYTRS_3', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
     $   RETURN
*
      IF( UPPER ) THEN
*
*        Begin Upper
*
*        Solve A*X = B, where A = U*D*U**T.
*
*        P**T * B
*
*        Interchange rows K and IPIV(K) of matrix B in the same order
*        that the formation order of IPIV(I) vector for Upper case.
*
*        (We can do the simple loop over IPIV with decrement -1,
*        since the ABS value of IPIV(I) represents the row index
*        of the interchange with row i in both 1x1 and 2x2 pivot cases)
*
         DO K = N, 1, -1
            KP = ABS( IPIV( K ) )
            IF( KP.NE.K ) THEN
               CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
            END IF
         END DO
*
*        Compute (U \P**T * B) -> B    [ (U \P**T * B) ]
*
         CALL CTRSM( 'L', 'U', 'N', 'U', N, NRHS, ONE, A, LDA, B, LDB )
*
*        Compute D \ B -> B   [ D \ (U \P**T * B) ]
*
         I = N
         DO WHILE ( I.GE.1 )
            IF( IPIV( I ).GT.0 ) THEN
               CALL CSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), LDB )
            ELSE IF ( I.GT.1 ) THEN
               AKM1K = E( I )
               AKM1 = A( I-1, I-1 ) / AKM1K
               AK = A( I, I ) / AKM1K
               DENOM = AKM1*AK - ONE
               DO J = 1, NRHS
                  BKM1 = B( I-1, J ) / AKM1K
                  BK = B( I, J ) / AKM1K
                  B( I-1, J ) = ( AK*BKM1-BK ) / DENOM
                  B( I, J ) = ( AKM1*BK-BKM1 ) / DENOM
               END DO
               I = I - 1
            END IF
            I = I - 1
         END DO
*
*        Compute (U**T \ B) -> B   [ U**T \ (D \ (U \P**T * B) ) ]
*
         CALL CTRSM( 'L', 'U', 'T', 'U', N, NRHS, ONE, A, LDA, B, LDB )
*
*        P * B  [ P * (U**T \ (D \ (U \P**T * B) )) ]
*
*        Interchange rows K and IPIV(K) of matrix B in reverse order
*        from the formation order of IPIV(I) vector for Upper case.
*
*        (We can do the simple loop over IPIV with increment 1,
*        since the ABS value of IPIV( I ) represents the row index
*        of the interchange with row i in both 1x1 and 2x2 pivot cases)
*
         DO K = 1, N, 1
            KP = ABS( IPIV( K ) )
            IF( KP.NE.K ) THEN
               CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
            END IF
         END DO
*
      ELSE
*
*        Begin Lower
*
*        Solve A*X = B, where A = L*D*L**T.
*
*        P**T * B
*        Interchange rows K and IPIV(K) of matrix B in the same order
*        that the formation order of IPIV(I) vector for Lower case.
*
*        (We can do the simple loop over IPIV with increment 1,
*        since the ABS value of IPIV(I) represents the row index
*        of the interchange with row i in both 1x1 and 2x2 pivot cases)
*
         DO K = 1, N, 1
            KP = ABS( IPIV( K ) )
            IF( KP.NE.K ) THEN
               CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
            END IF
         END DO
*
*        Compute (L \P**T * B) -> B    [ (L \P**T * B) ]
*
         CALL CTRSM( 'L', 'L', 'N', 'U', N, NRHS, ONE, A, LDA, B, LDB )
*
*        Compute D \ B -> B   [ D \ (L \P**T * B) ]
*
         I = 1
         DO WHILE ( I.LE.N )
            IF( IPIV( I ).GT.0 ) THEN
               CALL CSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), LDB )
            ELSE IF( I.LT.N ) THEN
               AKM1K = E( I )
               AKM1 = A( I, I ) / AKM1K
               AK = A( I+1, I+1 ) / AKM1K
               DENOM = AKM1*AK - ONE
               DO  J = 1, NRHS
                  BKM1 = B( I, J ) / AKM1K
                  BK = B( I+1, J ) / AKM1K
                  B( I, J ) = ( AK*BKM1-BK ) / DENOM
                  B( I+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
               END DO
               I = I + 1
            END IF
            I = I + 1
         END DO
*
*        Compute (L**T \ B) -> B   [ L**T \ (D \ (L \P**T * B) ) ]
*
         CALL CTRSM('L', 'L', 'T', 'U', N, NRHS, ONE, A, LDA, B, LDB )
*
*        P * B  [ P * (L**T \ (D \ (L \P**T * B) )) ]
*
*        Interchange rows K and IPIV(K) of matrix B in reverse order
*        from the formation order of IPIV(I) vector for Lower case.
*
*        (We can do the simple loop over IPIV with decrement -1,
*        since the ABS value of IPIV(I) represents the row index
*        of the interchange with row i in both 1x1 and 2x2 pivot cases)
*
         DO K = N, 1, -1
            KP = ABS( IPIV( K ) )
            IF( KP.NE.K ) THEN
               CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
            END IF
         END DO
*
*        END Lower
*
      END IF
*
      RETURN
*
*     End of CSYTRS_3
*
      END