summaryrefslogtreecommitdiff
path: root/SRC/csyequb.f
blob: cffd35c5adb87f92fe94b8c68be5026f89108ada (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
      SUBROUTINE CSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
*
*     -- LAPACK routine (version 3.2)                                 --
*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
*     -- Jason Riedy of Univ. of California Berkeley.                 --
*     -- November 2008                                                --
*
*     -- LAPACK is a software package provided by Univ. of Tennessee, --
*     -- Univ. of California Berkeley and NAG Ltd.                    --
*
      IMPLICIT NONE
*     ..
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, N
      REAL               AMAX, SCOND
      CHARACTER          UPLO
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), WORK( * )
      REAL               S( * )
*     ..
*
*  Purpose
*  =======
*
*  CSYEQUB computes row and column scalings intended to equilibrate a
*  symmetric matrix A and reduce its condition number
*  (with respect to the two-norm).  S contains the scale factors,
*  S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
*  elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This
*  choice of S puts the condition number of B within a factor N of the
*  smallest possible condition number over all possible diagonal
*  scalings.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the details of the factorization are stored
*          as an upper or lower triangular matrix.
*          = 'U':  Upper triangular, form is A = U*D*U**T;
*          = 'L':  Lower triangular, form is A = L*D*L**T.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input) COMPLEX array, dimension (LDA,N)
*          The N-by-N symmetric matrix whose scaling
*          factors are to be computed.  Only the diagonal elements of A
*          are referenced.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  S       (output) REAL array, dimension (N)
*          If INFO = 0, S contains the scale factors for A.
*
*  SCOND   (output) REAL
*          If INFO = 0, S contains the ratio of the smallest S(i) to
*          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
*          large nor too small, it is not worth scaling by S.
*
*  AMAX    (output) REAL
*          Absolute value of largest matrix element.  If AMAX is very
*          close to overflow or very close to underflow, the matrix
*          should be scaled.
*
*  WORK    (workspace) COMPLEX array, dimension (3*N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
*
*  Further Details
*  ======= =======
*
*  Reference: Livne, O.E. and Golub, G.H., "Scaling by Binormalization",
*  Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
*  DOI 10.1023/B:NUMA.0000016606.32820.69
*  Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E0, ZERO = 0.0E0 )
      INTEGER            MAX_ITER
      PARAMETER          ( MAX_ITER = 100 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, ITER
      REAL               AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE,
     $                   SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
      LOGICAL            UP
      COMPLEX            ZDUM
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      LOGICAL            LSAME
      EXTERNAL           LSAME, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLASSQ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, INT, LOG, MAX, MIN, REAL, SQRT
*     ..
*     .. Statement Functions ..
      REAL               CABS1
*     ..
*     Statement Function Definitions
      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF ( .NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
        INFO = -1
      ELSE IF ( N .LT. 0 ) THEN
        INFO = -2
      ELSE IF ( LDA .LT. MAX( 1, N ) ) THEN
        INFO = -4
      END IF
      IF ( INFO .NE. 0 ) THEN
        CALL XERBLA( 'CSYEQUB', -INFO )
        RETURN
      END IF

      UP = LSAME( UPLO, 'U' )
      AMAX = ZERO
*
*     Quick return if possible.
*
      IF ( N .EQ. 0 ) THEN
        SCOND = ONE
        RETURN
      END IF

      DO I = 1, N
        S( I ) = ZERO
      END DO

      AMAX = ZERO
      IF ( UP ) THEN
         DO J = 1, N
            DO I = 1, J-1
               S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
               S( J ) = MAX( S( J ), CABS1( A( I, J ) ) )
               AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
            END DO
            S( J ) = MAX( S( J ), CABS1( A( J, J) ) )
            AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
         END DO
      ELSE
         DO J = 1, N
            S( J ) = MAX( S( J ), CABS1( A( J, J ) ) )
            AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
            DO I = J+1, N
               S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
               S( J ) = MAX( S( J ), CABS1 (A( I, J ) ) )
               AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
            END DO
         END DO
      END IF
      DO J = 1, N
         S( J ) = 1.0 / S( J )
      END DO

      TOL = ONE / SQRT( 2.0E0 * N )

      DO ITER = 1, MAX_ITER
         SCALE = 0.0
         SUMSQ = 0.0
*       beta = |A|s
        DO I = 1, N
           WORK( I ) = ZERO
        END DO
        IF ( UP ) THEN
           DO J = 1, N
              DO I = 1, J-1
                 T = CABS1( A( I, J ) )
                 WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
                 WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
              END DO
              WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
           END DO
        ELSE
           DO J = 1, N
              WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
              DO I = J+1, N
                 T = CABS1( A( I, J ) )
                 WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
                 WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
              END DO
           END DO
        END IF

*       avg = s^T beta / n
        AVG = 0.0
        DO I = 1, N
          AVG = AVG + S( I )*WORK( I )
        END DO
        AVG = AVG / N

        STD = 0.0
        DO I = N+1, 2*N
           WORK( I ) = S( I-N ) * WORK( I-N ) - AVG
        END DO
        CALL CLASSQ( N, WORK( N+1 ), 1, SCALE, SUMSQ )
        STD = SCALE * SQRT( SUMSQ / N )

        IF ( STD .LT. TOL * AVG ) GOTO 999

        DO I = 1, N
          T = CABS1( A( I, I ) )
          SI = S( I )
          C2 = ( N-1 ) * T
          C1 = ( N-2 ) * ( WORK( I ) - T*SI )
          C0 = -(T*SI)*SI + 2*WORK( I )*SI - N*AVG
          D = C1*C1 - 4*C0*C2

          IF ( D .LE. 0 ) THEN
            INFO = -1
            RETURN
          END IF
          SI = -2*C0 / ( C1 + SQRT( D ) )

          D = SI - S( I )
          U = ZERO
          IF ( UP ) THEN
            DO J = 1, I
              T = CABS1( A( J, I ) )
              U = U + S( J )*T
              WORK( J ) = WORK( J ) + D*T
            END DO
            DO J = I+1,N
              T = CABS1( A( I, J ) )
              U = U + S( J )*T
              WORK( J ) = WORK( J ) + D*T
            END DO
          ELSE
            DO J = 1, I
              T = CABS1( A( I, J ) )
              U = U + S( J )*T
              WORK( J ) = WORK( J ) + D*T
            END DO
            DO J = I+1,N
              T = CABS1( A( J, I ) )
              U = U + S( J )*T
              WORK( J ) = WORK( J ) + D*T
            END DO
          END IF
          AVG = AVG + ( U + WORK( I ) ) * D / N
          S( I ) = SI
        END DO
      END DO

 999  CONTINUE

      SMLNUM = SLAMCH( 'SAFEMIN' )
      BIGNUM = ONE / SMLNUM
      SMIN = BIGNUM
      SMAX = ZERO
      T = ONE / SQRT( AVG )
      BASE = SLAMCH( 'B' )
      U = ONE / LOG( BASE )
      DO I = 1, N
        S( I ) = BASE ** INT( U * LOG( S( I ) * T ) )
        SMIN = MIN( SMIN, S( I ) )
        SMAX = MAX( SMAX, S( I ) )
      END DO
      SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
*
      END