summaryrefslogtreecommitdiff
path: root/SRC/cspcon.f
blob: f8bcc776420c15a78b4c61a775b988ae0895d375 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
*> \brief \b CSPCON
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CSPCON + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cspcon.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cspcon.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cspcon.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CSPCON( UPLO, N, AP, IPIV, ANORM, RCOND, WORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, N
*       REAL               ANORM, RCOND
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       COMPLEX            AP( * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CSPCON estimates the reciprocal of the condition number (in the
*> 1-norm) of a complex symmetric packed matrix A using the
*> factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF.
*>
*> An estimate is obtained for norm(inv(A)), and the reciprocal of the
*> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the details of the factorization are stored
*>          as an upper or lower triangular matrix.
*>          = 'U':  Upper triangular, form is A = U*D*U**T;
*>          = 'L':  Lower triangular, form is A = L*D*L**T.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*>          AP is COMPLEX array, dimension (N*(N+1)/2)
*>          The block diagonal matrix D and the multipliers used to
*>          obtain the factor U or L as computed by CSPTRF, stored as a
*>          packed triangular matrix.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          Details of the interchanges and the block structure of D
*>          as determined by CSPTRF.
*> \endverbatim
*>
*> \param[in] ANORM
*> \verbatim
*>          ANORM is REAL
*>          The 1-norm of the original matrix A.
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*>          RCOND is REAL
*>          The reciprocal of the condition number of the matrix A,
*>          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
*>          estimate of the 1-norm of inv(A) computed in this routine.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexOTHERcomputational
*
*  =====================================================================
      SUBROUTINE CSPCON( UPLO, N, AP, IPIV, ANORM, RCOND, WORK, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, N
      REAL               ANORM, RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            AP( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, IP, KASE
      REAL               AINVNM
*     ..
*     .. Local Arrays ..
      INTEGER            ISAVE( 3 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLACN2, CSPTRS, XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( ANORM.LT.ZERO ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CSPCON', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      RCOND = ZERO
      IF( N.EQ.0 ) THEN
         RCOND = ONE
         RETURN
      ELSE IF( ANORM.LE.ZERO ) THEN
         RETURN
      END IF
*
*     Check that the diagonal matrix D is nonsingular.
*
      IF( UPPER ) THEN
*
*        Upper triangular storage: examine D from bottom to top
*
         IP = N*( N+1 ) / 2
         DO 10 I = N, 1, -1
            IF( IPIV( I ).GT.0 .AND. AP( IP ).EQ.ZERO )
     $         RETURN
            IP = IP - I
   10    CONTINUE
      ELSE
*
*        Lower triangular storage: examine D from top to bottom.
*
         IP = 1
         DO 20 I = 1, N
            IF( IPIV( I ).GT.0 .AND. AP( IP ).EQ.ZERO )
     $         RETURN
            IP = IP + N - I + 1
   20    CONTINUE
      END IF
*
*     Estimate the 1-norm of the inverse.
*
      KASE = 0
   30 CONTINUE
      CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
      IF( KASE.NE.0 ) THEN
*
*        Multiply by inv(L*D*L**T) or inv(U*D*U**T).
*
         CALL CSPTRS( UPLO, N, 1, AP, IPIV, WORK, N, INFO )
         GO TO 30
      END IF
*
*     Compute the estimate of the reciprocal condition number.
*
      IF( AINVNM.NE.ZERO )
     $   RCOND = ( ONE / AINVNM ) / ANORM
*
      RETURN
*
*     End of CSPCON
*
      END