summaryrefslogtreecommitdiff
path: root/SRC/cptrfs.f
blob: 88e645046a29de05d6c59c5cbde7280ff37a0820 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
      SUBROUTINE CPTRFS( UPLO, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
     $                   FERR, BERR, WORK, RWORK, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDB, LDX, N, NRHS
*     ..
*     .. Array Arguments ..
      REAL               BERR( * ), D( * ), DF( * ), FERR( * ),
     $                   RWORK( * )
      COMPLEX            B( LDB, * ), E( * ), EF( * ), WORK( * ),
     $                   X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  CPTRFS improves the computed solution to a system of linear
*  equations when the coefficient matrix is Hermitian positive definite
*  and tridiagonal, and provides error bounds and backward error
*  estimates for the solution.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the superdiagonal or the subdiagonal of the
*          tridiagonal matrix A is stored and the form of the
*          factorization:
*          = 'U':  E is the superdiagonal of A, and A = U**H*D*U;
*          = 'L':  E is the subdiagonal of A, and A = L*D*L**H.
*          (The two forms are equivalent if A is real.)
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  D       (input) REAL array, dimension (N)
*          The n real diagonal elements of the tridiagonal matrix A.
*
*  E       (input) COMPLEX array, dimension (N-1)
*          The (n-1) off-diagonal elements of the tridiagonal matrix A
*          (see UPLO).
*
*  DF      (input) REAL array, dimension (N)
*          The n diagonal elements of the diagonal matrix D from
*          the factorization computed by CPTTRF.
*
*  EF      (input) COMPLEX array, dimension (N-1)
*          The (n-1) off-diagonal elements of the unit bidiagonal
*          factor U or L from the factorization computed by CPTTRF
*          (see UPLO).
*
*  B       (input) COMPLEX array, dimension (LDB,NRHS)
*          The right hand side matrix B.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  X       (input/output) COMPLEX array, dimension (LDX,NRHS)
*          On entry, the solution matrix X, as computed by CPTTRS.
*          On exit, the improved solution matrix X.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.  LDX >= max(1,N).
*
*  FERR    (output) REAL array, dimension (NRHS)
*          The forward error bound for each solution vector
*          X(j) (the j-th column of the solution matrix X).
*          If XTRUE is the true solution corresponding to X(j), FERR(j)
*          is an estimated upper bound for the magnitude of the largest
*          element in (X(j) - XTRUE) divided by the magnitude of the
*          largest element in X(j).
*
*  BERR    (output) REAL array, dimension (NRHS)
*          The componentwise relative backward error of each solution
*          vector X(j) (i.e., the smallest relative change in
*          any element of A or B that makes X(j) an exact solution).
*
*  WORK    (workspace) COMPLEX array, dimension (N)
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  Internal Parameters
*  ===================
*
*  ITMAX is the maximum number of steps of iterative refinement.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            ITMAX
      PARAMETER          ( ITMAX = 5 )
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E+0 )
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
      REAL               TWO
      PARAMETER          ( TWO = 2.0E+0 )
      REAL               THREE
      PARAMETER          ( THREE = 3.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            COUNT, I, IX, J, NZ
      REAL               EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN
      COMPLEX            BI, CX, DX, EX, ZDUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ISAMAX
      REAL               SLAMCH
      EXTERNAL           LSAME, ISAMAX, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CAXPY, CPTTRS, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, CMPLX, CONJG, MAX, REAL
*     ..
*     .. Statement Functions ..
      REAL               CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
         INFO = -11
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CPTRFS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
         DO 10 J = 1, NRHS
            FERR( J ) = ZERO
            BERR( J ) = ZERO
   10    CONTINUE
         RETURN
      END IF
*
*     NZ = maximum number of nonzero elements in each row of A, plus 1
*
      NZ = 4
      EPS = SLAMCH( 'Epsilon' )
      SAFMIN = SLAMCH( 'Safe minimum' )
      SAFE1 = NZ*SAFMIN
      SAFE2 = SAFE1 / EPS
*
*     Do for each right hand side
*
      DO 100 J = 1, NRHS
*
         COUNT = 1
         LSTRES = THREE
   20    CONTINUE
*
*        Loop until stopping criterion is satisfied.
*
*        Compute residual R = B - A * X.  Also compute
*        abs(A)*abs(x) + abs(b) for use in the backward error bound.
*
         IF( UPPER ) THEN
            IF( N.EQ.1 ) THEN
               BI = B( 1, J )
               DX = D( 1 )*X( 1, J )
               WORK( 1 ) = BI - DX
               RWORK( 1 ) = CABS1( BI ) + CABS1( DX )
            ELSE
               BI = B( 1, J )
               DX = D( 1 )*X( 1, J )
               EX = E( 1 )*X( 2, J )
               WORK( 1 ) = BI - DX - EX
               RWORK( 1 ) = CABS1( BI ) + CABS1( DX ) +
     $                      CABS1( E( 1 ) )*CABS1( X( 2, J ) )
               DO 30 I = 2, N - 1
                  BI = B( I, J )
                  CX = CONJG( E( I-1 ) )*X( I-1, J )
                  DX = D( I )*X( I, J )
                  EX = E( I )*X( I+1, J )
                  WORK( I ) = BI - CX - DX - EX
                  RWORK( I ) = CABS1( BI ) +
     $                         CABS1( E( I-1 ) )*CABS1( X( I-1, J ) ) +
     $                         CABS1( DX ) + CABS1( E( I ) )*
     $                         CABS1( X( I+1, J ) )
   30          CONTINUE
               BI = B( N, J )
               CX = CONJG( E( N-1 ) )*X( N-1, J )
               DX = D( N )*X( N, J )
               WORK( N ) = BI - CX - DX
               RWORK( N ) = CABS1( BI ) + CABS1( E( N-1 ) )*
     $                      CABS1( X( N-1, J ) ) + CABS1( DX )
            END IF
         ELSE
            IF( N.EQ.1 ) THEN
               BI = B( 1, J )
               DX = D( 1 )*X( 1, J )
               WORK( 1 ) = BI - DX
               RWORK( 1 ) = CABS1( BI ) + CABS1( DX )
            ELSE
               BI = B( 1, J )
               DX = D( 1 )*X( 1, J )
               EX = CONJG( E( 1 ) )*X( 2, J )
               WORK( 1 ) = BI - DX - EX
               RWORK( 1 ) = CABS1( BI ) + CABS1( DX ) +
     $                      CABS1( E( 1 ) )*CABS1( X( 2, J ) )
               DO 40 I = 2, N - 1
                  BI = B( I, J )
                  CX = E( I-1 )*X( I-1, J )
                  DX = D( I )*X( I, J )
                  EX = CONJG( E( I ) )*X( I+1, J )
                  WORK( I ) = BI - CX - DX - EX
                  RWORK( I ) = CABS1( BI ) +
     $                         CABS1( E( I-1 ) )*CABS1( X( I-1, J ) ) +
     $                         CABS1( DX ) + CABS1( E( I ) )*
     $                         CABS1( X( I+1, J ) )
   40          CONTINUE
               BI = B( N, J )
               CX = E( N-1 )*X( N-1, J )
               DX = D( N )*X( N, J )
               WORK( N ) = BI - CX - DX
               RWORK( N ) = CABS1( BI ) + CABS1( E( N-1 ) )*
     $                      CABS1( X( N-1, J ) ) + CABS1( DX )
            END IF
         END IF
*
*        Compute componentwise relative backward error from formula
*
*        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
*
*        where abs(Z) is the componentwise absolute value of the matrix
*        or vector Z.  If the i-th component of the denominator is less
*        than SAFE2, then SAFE1 is added to the i-th components of the
*        numerator and denominator before dividing.
*
         S = ZERO
         DO 50 I = 1, N
            IF( RWORK( I ).GT.SAFE2 ) THEN
               S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
            ELSE
               S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
     $             ( RWORK( I )+SAFE1 ) )
            END IF
   50    CONTINUE
         BERR( J ) = S
*
*        Test stopping criterion. Continue iterating if
*           1) The residual BERR(J) is larger than machine epsilon, and
*           2) BERR(J) decreased by at least a factor of 2 during the
*              last iteration, and
*           3) At most ITMAX iterations tried.
*
         IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
     $       COUNT.LE.ITMAX ) THEN
*
*           Update solution and try again.
*
            CALL CPTTRS( UPLO, N, 1, DF, EF, WORK, N, INFO )
            CALL CAXPY( N, CMPLX( ONE ), WORK, 1, X( 1, J ), 1 )
            LSTRES = BERR( J )
            COUNT = COUNT + 1
            GO TO 20
         END IF
*
*        Bound error from formula
*
*        norm(X - XTRUE) / norm(X) .le. FERR =
*        norm( abs(inv(A))*
*           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
*
*        where
*          norm(Z) is the magnitude of the largest component of Z
*          inv(A) is the inverse of A
*          abs(Z) is the componentwise absolute value of the matrix or
*             vector Z
*          NZ is the maximum number of nonzeros in any row of A, plus 1
*          EPS is machine epsilon
*
*        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
*        is incremented by SAFE1 if the i-th component of
*        abs(A)*abs(X) + abs(B) is less than SAFE2.
*
         DO 60 I = 1, N
            IF( RWORK( I ).GT.SAFE2 ) THEN
               RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
            ELSE
               RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
     $                      SAFE1
            END IF
   60    CONTINUE
         IX = ISAMAX( N, RWORK, 1 )
         FERR( J ) = RWORK( IX )
*
*        Estimate the norm of inv(A).
*
*        Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
*
*           m(i,j) =  abs(A(i,j)), i = j,
*           m(i,j) = -abs(A(i,j)), i .ne. j,
*
*        and e = [ 1, 1, ..., 1 ]'.  Note M(A) = M(L)*D*M(L)**H.
*
*        Solve M(L) * x = e.
*
         RWORK( 1 ) = ONE
         DO 70 I = 2, N
            RWORK( I ) = ONE + RWORK( I-1 )*ABS( EF( I-1 ) )
   70    CONTINUE
*
*        Solve D * M(L)**H * x = b.
*
         RWORK( N ) = RWORK( N ) / DF( N )
         DO 80 I = N - 1, 1, -1
            RWORK( I ) = RWORK( I ) / DF( I ) +
     $                   RWORK( I+1 )*ABS( EF( I ) )
   80    CONTINUE
*
*        Compute norm(inv(A)) = max(x(i)), 1<=i<=n.
*
         IX = ISAMAX( N, RWORK, 1 )
         FERR( J ) = FERR( J )*ABS( RWORK( IX ) )
*
*        Normalize error.
*
         LSTRES = ZERO
         DO 90 I = 1, N
            LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
   90    CONTINUE
         IF( LSTRES.NE.ZERO )
     $      FERR( J ) = FERR( J ) / LSTRES
*
  100 CONTINUE
*
      RETURN
*
*     End of CPTRFS
*
      END