1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
*> \brief \b CPOEQU
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CPOEQU + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpoequ.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpoequ.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpoequ.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CPOEQU( N, A, LDA, S, SCOND, AMAX, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, N
* REAL AMAX, SCOND
* ..
* .. Array Arguments ..
* REAL S( * )
* COMPLEX A( LDA, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CPOEQU computes row and column scalings intended to equilibrate a
*> Hermitian positive definite matrix A and reduce its condition number
*> (with respect to the two-norm). S contains the scale factors,
*> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
*> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
*> choice of S puts the condition number of B within a factor N of the
*> smallest possible condition number over all possible diagonal
*> scalings.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> The N-by-N Hermitian positive definite matrix whose scaling
*> factors are to be computed. Only the diagonal elements of A
*> are referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is REAL array, dimension (N)
*> If INFO = 0, S contains the scale factors for A.
*> \endverbatim
*>
*> \param[out] SCOND
*> \verbatim
*> SCOND is REAL
*> If INFO = 0, S contains the ratio of the smallest S(i) to
*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
*> large nor too small, it is not worth scaling by S.
*> \endverbatim
*>
*> \param[out] AMAX
*> \verbatim
*> AMAX is REAL
*> Absolute value of largest matrix element. If AMAX is very
*> close to overflow or very close to underflow, the matrix
*> should be scaled.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, the i-th diagonal element is nonpositive.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexPOcomputational
*
* =====================================================================
SUBROUTINE CPOEQU( N, A, LDA, S, SCOND, AMAX, INFO )
*
* -- LAPACK computational routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, N
REAL AMAX, SCOND
* ..
* .. Array Arguments ..
REAL S( * )
COMPLEX A( LDA, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I
REAL SMIN
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, REAL, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -3
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CPOEQU', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 ) THEN
SCOND = ONE
AMAX = ZERO
RETURN
END IF
*
* Find the minimum and maximum diagonal elements.
*
S( 1 ) = REAL( A( 1, 1 ) )
SMIN = S( 1 )
AMAX = S( 1 )
DO 10 I = 2, N
S( I ) = REAL( A( I, I ) )
SMIN = MIN( SMIN, S( I ) )
AMAX = MAX( AMAX, S( I ) )
10 CONTINUE
*
IF( SMIN.LE.ZERO ) THEN
*
* Find the first non-positive diagonal element and return.
*
DO 20 I = 1, N
IF( S( I ).LE.ZERO ) THEN
INFO = I
RETURN
END IF
20 CONTINUE
ELSE
*
* Set the scale factors to the reciprocals
* of the diagonal elements.
*
DO 30 I = 1, N
S( I ) = ONE / SQRT( S( I ) )
30 CONTINUE
*
* Compute SCOND = min(S(I)) / max(S(I))
*
SCOND = SQRT( SMIN ) / SQRT( AMAX )
END IF
RETURN
*
* End of CPOEQU
*
END
|