summaryrefslogtreecommitdiff
path: root/SRC/cpocon.f
blob: 4763b58aab5755458955cfa085665a1d631a1a13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
      SUBROUTINE CPOCON( UPLO, N, A, LDA, ANORM, RCOND, WORK, RWORK,
     $                   INFO )
*
*  -- LAPACK routine (version 3.2) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH.
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, N
      REAL               ANORM, RCOND
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            A( LDA, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CPOCON estimates the reciprocal of the condition number (in the
*  1-norm) of a complex Hermitian positive definite matrix using the
*  Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF.
*
*  An estimate is obtained for norm(inv(A)), and the reciprocal of the
*  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input) COMPLEX array, dimension (LDA,N)
*          The triangular factor U or L from the Cholesky factorization
*          A = U**H*U or A = L*L**H, as computed by CPOTRF.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  ANORM   (input) REAL
*          The 1-norm (or infinity-norm) of the Hermitian matrix A.
*
*  RCOND   (output) REAL
*          The reciprocal of the condition number of the matrix A,
*          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
*          estimate of the 1-norm of inv(A) computed in this routine.
*
*  WORK    (workspace) COMPLEX array, dimension (2*N)
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      CHARACTER          NORMIN
      INTEGER            IX, KASE
      REAL               AINVNM, SCALE, SCALEL, SCALEU, SMLNUM
      COMPLEX            ZDUM
*     ..
*     .. Local Arrays ..
      INTEGER            ISAVE( 3 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICAMAX
      REAL               SLAMCH
      EXTERNAL           LSAME, ICAMAX, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLACN2, CLATRS, CSRSCL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, MAX, REAL
*     ..
*     .. Statement Functions ..
      REAL               CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( ANORM.LT.ZERO ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CPOCON', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      RCOND = ZERO
      IF( N.EQ.0 ) THEN
         RCOND = ONE
         RETURN
      ELSE IF( ANORM.EQ.ZERO ) THEN
         RETURN
      END IF
*
      SMLNUM = SLAMCH( 'Safe minimum' )
*
*     Estimate the 1-norm of inv(A).
*
      KASE = 0
      NORMIN = 'N'
   10 CONTINUE
      CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
      IF( KASE.NE.0 ) THEN
         IF( UPPER ) THEN
*
*           Multiply by inv(U').
*
            CALL CLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
     $                   NORMIN, N, A, LDA, WORK, SCALEL, RWORK, INFO )
            NORMIN = 'Y'
*
*           Multiply by inv(U).
*
            CALL CLATRS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
     $                   A, LDA, WORK, SCALEU, RWORK, INFO )
         ELSE
*
*           Multiply by inv(L).
*
            CALL CLATRS( 'Lower', 'No transpose', 'Non-unit', NORMIN, N,
     $                   A, LDA, WORK, SCALEL, RWORK, INFO )
            NORMIN = 'Y'
*
*           Multiply by inv(L').
*
            CALL CLATRS( 'Lower', 'Conjugate transpose', 'Non-unit',
     $                   NORMIN, N, A, LDA, WORK, SCALEU, RWORK, INFO )
         END IF
*
*        Multiply by 1/SCALE if doing so will not cause overflow.
*
         SCALE = SCALEL*SCALEU
         IF( SCALE.NE.ONE ) THEN
            IX = ICAMAX( N, WORK, 1 )
            IF( SCALE.LT.CABS1( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
     $         GO TO 20
            CALL CSRSCL( N, SCALE, WORK, 1 )
         END IF
         GO TO 10
      END IF
*
*     Compute the estimate of the reciprocal condition number.
*
      IF( AINVNM.NE.ZERO )
     $   RCOND = ( ONE / AINVNM ) / ANORM
*
   20 CONTINUE
      RETURN
*
*     End of CPOCON
*
      END