summaryrefslogtreecommitdiff
path: root/SRC/cpbtf2.f
blob: bed45ef465bba4999deed6455a4ef8e0f4e6c03a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
*> \brief \b CPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (unblocked algorithm).
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download CPBTF2 + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpbtf2.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpbtf2.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpbtf2.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CPBTF2( UPLO, N, KD, AB, LDAB, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, KD, LDAB, N
*       ..
*       .. Array Arguments ..
*       COMPLEX            AB( LDAB, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CPBTF2 computes the Cholesky factorization of a complex Hermitian
*> positive definite band matrix A.
*>
*> The factorization has the form
*>    A = U**H * U ,  if UPLO = 'U', or
*>    A = L  * L**H,  if UPLO = 'L',
*> where U is an upper triangular matrix, U**H is the conjugate transpose
*> of U, and L is lower triangular.
*>
*> This is the unblocked version of the algorithm, calling Level 2 BLAS.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          Hermitian matrix A is stored:
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*>          KD is INTEGER
*>          The number of super-diagonals of the matrix A if UPLO = 'U',
*>          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
*> \endverbatim
*>
*> \param[in,out] AB
*> \verbatim
*>          AB is COMPLEX array, dimension (LDAB,N)
*>          On entry, the upper or lower triangle of the Hermitian band
*>          matrix A, stored in the first KD+1 rows of the array.  The
*>          j-th column of A is stored in the j-th column of the array AB
*>          as follows:
*>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
*>
*>          On exit, if INFO = 0, the triangular factor U or L from the
*>          Cholesky factorization A = U**H *U or A = L*L**H of the band
*>          matrix A, in the same storage format as A.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= KD+1.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -k, the k-th argument had an illegal value
*>          > 0: if INFO = k, the leading minor of order k is not
*>               positive definite, and the factorization could not be
*>               completed.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complexOTHERcomputational
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The band storage scheme is illustrated by the following example, when
*>  N = 6, KD = 2, and UPLO = 'U':
*>
*>  On entry:                       On exit:
*>
*>      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
*>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
*>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
*>
*>  Similarly, if UPLO = 'L' the format of A is as follows:
*>
*>  On entry:                       On exit:
*>
*>     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
*>     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
*>     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *
*>
*>  Array elements marked * are not used by the routine.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE CPBTF2( UPLO, N, KD, AB, LDAB, INFO )
*
*  -- LAPACK computational routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, KD, LDAB, N
*     ..
*     .. Array Arguments ..
      COMPLEX            AB( LDAB, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            J, KLD, KN
      REAL               AJJ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CHER, CLACGV, CSSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, REAL, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( KD.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDAB.LT.KD+1 ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CPBTF2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      KLD = MAX( 1, LDAB-1 )
*
      IF( UPPER ) THEN
*
*        Compute the Cholesky factorization A = U**H * U.
*
         DO 10 J = 1, N
*
*           Compute U(J,J) and test for non-positive-definiteness.
*
            AJJ = REAL( AB( KD+1, J ) )
            IF( AJJ.LE.ZERO ) THEN
               AB( KD+1, J ) = AJJ
               GO TO 30
            END IF
            AJJ = SQRT( AJJ )
            AB( KD+1, J ) = AJJ
*
*           Compute elements J+1:J+KN of row J and update the
*           trailing submatrix within the band.
*
            KN = MIN( KD, N-J )
            IF( KN.GT.0 ) THEN
               CALL CSSCAL( KN, ONE / AJJ, AB( KD, J+1 ), KLD )
               CALL CLACGV( KN, AB( KD, J+1 ), KLD )
               CALL CHER( 'Upper', KN, -ONE, AB( KD, J+1 ), KLD,
     $                    AB( KD+1, J+1 ), KLD )
               CALL CLACGV( KN, AB( KD, J+1 ), KLD )
            END IF
   10    CONTINUE
      ELSE
*
*        Compute the Cholesky factorization A = L*L**H.
*
         DO 20 J = 1, N
*
*           Compute L(J,J) and test for non-positive-definiteness.
*
            AJJ = REAL( AB( 1, J ) )
            IF( AJJ.LE.ZERO ) THEN
               AB( 1, J ) = AJJ
               GO TO 30
            END IF
            AJJ = SQRT( AJJ )
            AB( 1, J ) = AJJ
*
*           Compute elements J+1:J+KN of column J and update the
*           trailing submatrix within the band.
*
            KN = MIN( KD, N-J )
            IF( KN.GT.0 ) THEN
               CALL CSSCAL( KN, ONE / AJJ, AB( 2, J ), 1 )
               CALL CHER( 'Lower', KN, -ONE, AB( 2, J ), 1,
     $                    AB( 1, J+1 ), KLD )
            END IF
   20    CONTINUE
      END IF
      RETURN
*
   30 CONTINUE
      INFO = J
      RETURN
*
*     End of CPBTF2
*
      END