summaryrefslogtreecommitdiff
path: root/SRC/cpbstf.f
blob: 2d6b34117fdc3ca7aa3ae6c49bff913f673fb0c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
      SUBROUTINE CPBSTF( UPLO, N, KD, AB, LDAB, INFO )
*
*  -- LAPACK routine (version 3.2) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, KD, LDAB, N
*     ..
*     .. Array Arguments ..
      COMPLEX            AB( LDAB, * )
*     ..
*
*  Purpose
*  =======
*
*  CPBSTF computes a split Cholesky factorization of a complex
*  Hermitian positive definite band matrix A.
*
*  This routine is designed to be used in conjunction with CHBGST.
*
*  The factorization has the form  A = S**H*S  where S is a band matrix
*  of the same bandwidth as A and the following structure:
*
*    S = ( U    )
*        ( M  L )
*
*  where U is upper triangular of order m = (n+kd)/2, and L is lower
*  triangular of order n-m.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  KD      (input) INTEGER
*          The number of superdiagonals of the matrix A if UPLO = 'U',
*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
*
*  AB      (input/output) COMPLEX array, dimension (LDAB,N)
*          On entry, the upper or lower triangle of the Hermitian band
*          matrix A, stored in the first kd+1 rows of the array.  The
*          j-th column of A is stored in the j-th column of the array AB
*          as follows:
*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
*
*          On exit, if INFO = 0, the factor S from the split Cholesky
*          factorization A = S**H*S. See Further Details.
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array AB.  LDAB >= KD+1.
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*          > 0: if INFO = i, the factorization could not be completed,
*               because the updated element a(i,i) was negative; the
*               matrix A is not positive definite.
*
*  Further Details
*  ===============
*
*  The band storage scheme is illustrated by the following example, when
*  N = 7, KD = 2:
*
*  S = ( s11  s12  s13                     )
*      (      s22  s23  s24                )
*      (           s33  s34                )
*      (                s44                )
*      (           s53  s54  s55           )
*      (                s64  s65  s66      )
*      (                     s75  s76  s77 )
*
*  If UPLO = 'U', the array AB holds:
*
*  on entry:                          on exit:
*
*   *    *   a13  a24  a35  a46  a57   *    *   s13  s24  s53' s64' s75'
*   *   a12  a23  a34  a45  a56  a67   *   s12  s23  s34  s54' s65' s76'
*  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55  s66  s77
*
*  If UPLO = 'L', the array AB holds:
*
*  on entry:                          on exit:
*
*  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55  s66  s77
*  a21  a32  a43  a54  a65  a76   *   s12' s23' s34' s54  s65  s76   *
*  a31  a42  a53  a64  a64   *    *   s13' s24' s53  s64  s75   *    *
*
*  Array elements marked * are not used by the routine; s12' denotes
*  conjg(s12); the diagonal elements of S are real.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            J, KLD, KM, M
      REAL               AJJ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CHER, CLACGV, CSSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, REAL, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( KD.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDAB.LT.KD+1 ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CPBSTF', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      KLD = MAX( 1, LDAB-1 )
*
*     Set the splitting point m.
*
      M = ( N+KD ) / 2
*
      IF( UPPER ) THEN
*
*        Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
*
         DO 10 J = N, M + 1, -1
*
*           Compute s(j,j) and test for non-positive-definiteness.
*
            AJJ = REAL( AB( KD+1, J ) )
            IF( AJJ.LE.ZERO ) THEN
               AB( KD+1, J ) = AJJ
               GO TO 50
            END IF
            AJJ = SQRT( AJJ )
            AB( KD+1, J ) = AJJ
            KM = MIN( J-1, KD )
*
*           Compute elements j-km:j-1 of the j-th column and update the
*           the leading submatrix within the band.
*
            CALL CSSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 )
            CALL CHER( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1,
     $                 AB( KD+1, J-KM ), KLD )
   10    CONTINUE
*
*        Factorize the updated submatrix A(1:m,1:m) as U**H*U.
*
         DO 20 J = 1, M
*
*           Compute s(j,j) and test for non-positive-definiteness.
*
            AJJ = REAL( AB( KD+1, J ) )
            IF( AJJ.LE.ZERO ) THEN
               AB( KD+1, J ) = AJJ
               GO TO 50
            END IF
            AJJ = SQRT( AJJ )
            AB( KD+1, J ) = AJJ
            KM = MIN( KD, M-J )
*
*           Compute elements j+1:j+km of the j-th row and update the
*           trailing submatrix within the band.
*
            IF( KM.GT.0 ) THEN
               CALL CSSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD )
               CALL CLACGV( KM, AB( KD, J+1 ), KLD )
               CALL CHER( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD,
     $                    AB( KD+1, J+1 ), KLD )
               CALL CLACGV( KM, AB( KD, J+1 ), KLD )
            END IF
   20    CONTINUE
      ELSE
*
*        Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
*
         DO 30 J = N, M + 1, -1
*
*           Compute s(j,j) and test for non-positive-definiteness.
*
            AJJ = REAL( AB( 1, J ) )
            IF( AJJ.LE.ZERO ) THEN
               AB( 1, J ) = AJJ
               GO TO 50
            END IF
            AJJ = SQRT( AJJ )
            AB( 1, J ) = AJJ
            KM = MIN( J-1, KD )
*
*           Compute elements j-km:j-1 of the j-th row and update the
*           trailing submatrix within the band.
*
            CALL CSSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD )
            CALL CLACGV( KM, AB( KM+1, J-KM ), KLD )
            CALL CHER( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD,
     $                 AB( 1, J-KM ), KLD )
            CALL CLACGV( KM, AB( KM+1, J-KM ), KLD )
   30    CONTINUE
*
*        Factorize the updated submatrix A(1:m,1:m) as U**H*U.
*
         DO 40 J = 1, M
*
*           Compute s(j,j) and test for non-positive-definiteness.
*
            AJJ = REAL( AB( 1, J ) )
            IF( AJJ.LE.ZERO ) THEN
               AB( 1, J ) = AJJ
               GO TO 50
            END IF
            AJJ = SQRT( AJJ )
            AB( 1, J ) = AJJ
            KM = MIN( KD, M-J )
*
*           Compute elements j+1:j+km of the j-th column and update the
*           trailing submatrix within the band.
*
            IF( KM.GT.0 ) THEN
               CALL CSSCAL( KM, ONE / AJJ, AB( 2, J ), 1 )
               CALL CHER( 'Lower', KM, -ONE, AB( 2, J ), 1,
     $                    AB( 1, J+1 ), KLD )
            END IF
   40    CONTINUE
      END IF
      RETURN
*
   50 CONTINUE
      INFO = J
      RETURN
*
*     End of CPBSTF
*
      END