1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
SUBROUTINE CLAUU2( UPLO, N, A, LDA, INFO )
*
* -- LAPACK auxiliary routine (version 3.3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* -- April 2011 --
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * )
* ..
*
* Purpose
* =======
*
* CLAUU2 computes the product U * U**H or L**H * L, where the triangular
* factor U or L is stored in the upper or lower triangular part of
* the array A.
*
* If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
* overwriting the factor U in A.
* If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
* overwriting the factor L in A.
*
* This is the unblocked form of the algorithm, calling Level 2 BLAS.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* Specifies whether the triangular factor stored in the array A
* is upper or lower triangular:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (input) INTEGER
* The order of the triangular factor U or L. N >= 0.
*
* A (input/output) COMPLEX array, dimension (LDA,N)
* On entry, the triangular factor U or L.
* On exit, if UPLO = 'U', the upper triangle of A is
* overwritten with the upper triangle of the product U * U**H;
* if UPLO = 'L', the lower triangle of A is overwritten with
* the lower triangle of the product L**H * L.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -k, the k-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I
REAL AII
* ..
* .. External Functions ..
LOGICAL LSAME
COMPLEX CDOTC
EXTERNAL LSAME, CDOTC
* ..
* .. External Subroutines ..
EXTERNAL CGEMV, CLACGV, CSSCAL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX, MAX, REAL
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CLAUU2', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
IF( UPPER ) THEN
*
* Compute the product U * U**H.
*
DO 10 I = 1, N
AII = A( I, I )
IF( I.LT.N ) THEN
A( I, I ) = AII*AII + REAL( CDOTC( N-I, A( I, I+1 ), LDA,
$ A( I, I+1 ), LDA ) )
CALL CLACGV( N-I, A( I, I+1 ), LDA )
CALL CGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
$ LDA, A( I, I+1 ), LDA, CMPLX( AII ),
$ A( 1, I ), 1 )
CALL CLACGV( N-I, A( I, I+1 ), LDA )
ELSE
CALL CSSCAL( I, AII, A( 1, I ), 1 )
END IF
10 CONTINUE
*
ELSE
*
* Compute the product L**H * L.
*
DO 20 I = 1, N
AII = A( I, I )
IF( I.LT.N ) THEN
A( I, I ) = AII*AII + REAL( CDOTC( N-I, A( I+1, I ), 1,
$ A( I+1, I ), 1 ) )
CALL CLACGV( I-1, A( I, 1 ), LDA )
CALL CGEMV( 'Conjugate transpose', N-I, I-1, ONE,
$ A( I+1, 1 ), LDA, A( I+1, I ), 1,
$ CMPLX( AII ), A( I, 1 ), LDA )
CALL CLACGV( I-1, A( I, 1 ), LDA )
ELSE
CALL CSSCAL( I, AII, A( I, 1 ), LDA )
END IF
20 CONTINUE
END IF
*
RETURN
*
* End of CLAUU2
*
END
|