1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
*
* Definition:
* ===========
*
* SUBROUTINE CLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK,
* LWORK, INFO)
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK
* ..
* .. Array Arguments ..
* COMPLEX A( LDA, * ), T( LDT, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLASWLQ computes a blocked Short-Wide LQ factorization of a
*> M-by-N matrix A, where N >= M:
*> A = L * Q
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= M >= 0.
*> \endverbatim
*>
*> \param[in] MB
*> \verbatim
*> MB is INTEGER
*> The row block size to be used in the blocked QR.
*> M >= MB >= 1
*> \endverbatim
*> \param[in] NB
*> \verbatim
*> NB is INTEGER
*> The column block size to be used in the blocked QR.
*> NB > M.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit, the elements on and below the diagonal
*> of the array contain the N-by-N lower triangular matrix L;
*> the elements above the diagonal represent Q by the rows
*> of blocked V (see Further Details).
*>
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*> T is COMPLEX array,
*> dimension (LDT, N * Number_of_row_blocks)
*> where Number_of_row_blocks = CEIL((N-M)/(NB-M))
*> The blocked upper triangular block reflectors stored in compact form
*> as a sequence of upper triangular blocks.
*> See Further Details below.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T. LDT >= MB.
*> \endverbatim
*>
*>
*> \param[out] WORK
*> \verbatim
*> (workspace) COMPLEX array, dimension (MAX(1,LWORK))
*>
*> \endverbatim
*> \param[in] LWORK
*> \verbatim
*> The dimension of the array WORK. LWORK >= MB*M.
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*>
*> \endverbatim
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
*> representing Q as a product of other orthogonal matrices
*> Q = Q(1) * Q(2) * . . . * Q(k)
*> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
*> Q(1) zeros out the upper diagonal entries of rows 1:NB of A
*> Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
*> Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
*> . . .
*>
*> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
*> stored under the diagonal of rows 1:MB of A, and by upper triangular
*> block reflectors, stored in array T(1:LDT,1:N).
*> For more information see Further Details in GELQT.
*>
*> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
*> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
*> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
*> The last Q(k) may use fewer rows.
*> For more information see Further Details in TPQRT.
*>
*> For more details of the overall algorithm, see the description of
*> Sequential TSQR in Section 2.2 of [1].
*>
*> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
*> J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
*> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
$ INFO)
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
* December 2016
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N, MB, NB, LWORK, LDT
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), WORK( * ), T( LDT, *)
* ..
*
* =====================================================================
*
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, II, KK, CTR
* ..
* .. EXTERNAL FUNCTIONS ..
LOGICAL LSAME
EXTERNAL LSAME
* .. EXTERNAL SUBROUTINES ..
EXTERNAL CGELQT, CTPLQT, XERBLA
* .. INTRINSIC FUNCTIONS ..
INTRINSIC MAX, MIN, MOD
* ..
* .. EXTERNAL FUNCTIONS ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. EXECUTABLE STATEMENTS ..
*
* TEST THE INPUT ARGUMENTS
*
INFO = 0
*
LQUERY = ( LWORK.EQ.-1 )
*
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 .OR. N.LT.M ) THEN
INFO = -2
ELSE IF( MB.LT.1 .OR. ( MB.GT.M .AND. M.GT.0 )) THEN
INFO = -3
ELSE IF( NB.LE.M ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
ELSE IF( LDT.LT.MB ) THEN
INFO = -8
ELSE IF( ( LWORK.LT.M*MB) .AND. (.NOT.LQUERY) ) THEN
INFO = -10
END IF
IF( INFO.EQ.0) THEN
WORK(1) = MB*M
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CLASWLQ', -INFO )
RETURN
ELSE IF (LQUERY) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( MIN(M,N).EQ.0 ) THEN
RETURN
END IF
*
* The LQ Decomposition
*
IF((M.GE.N).OR.(NB.LE.M).OR.(NB.GE.N)) THEN
CALL CGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO)
RETURN
END IF
*
KK = MOD((N-M),(NB-M))
II=N-KK+1
*
* Compute the LQ factorization of the first block A(1:M,1:NB)
*
CALL CGELQT( M, NB, MB, A(1,1), LDA, T, LDT, WORK, INFO)
CTR = 1
*
DO I = NB+1, II-NB+M , (NB-M)
*
* Compute the QR factorization of the current block A(1:M,I:I+NB-M)
*
CALL CTPLQT( M, NB-M, 0, MB, A(1,1), LDA, A( 1, I ),
$ LDA, T(1,CTR*M+1),
$ LDT, WORK, INFO )
CTR = CTR + 1
END DO
*
* Compute the QR factorization of the last block A(1:M,II:N)
*
IF (II.LE.N) THEN
CALL CTPLQT( M, KK, 0, MB, A(1,1), LDA, A( 1, II ),
$ LDA, T(1,CTR*M+1), LDT,
$ WORK, INFO )
END IF
*
WORK( 1 ) = M * MB
RETURN
*
* End of CLASWLQ
*
END
|