summaryrefslogtreecommitdiff
path: root/SRC/clarz.f
blob: ead41fe047a00ec6ef79968b09539fdcf04633e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
      SUBROUTINE CLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE
      INTEGER            INCV, L, LDC, M, N
      COMPLEX            TAU
*     ..
*     .. Array Arguments ..
      COMPLEX            C( LDC, * ), V( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CLARZ applies a complex elementary reflector H to a complex
*  M-by-N matrix C, from either the left or the right. H is represented
*  in the form
*
*        H = I - tau * v * v'
*
*  where tau is a complex scalar and v is a complex vector.
*
*  If tau = 0, then H is taken to be the unit matrix.
*
*  To apply H' (the conjugate transpose of H), supply conjg(tau) instead
*  tau.
*
*  H is a product of k elementary reflectors as returned by CTZRZF.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'L': form  H * C
*          = 'R': form  C * H
*
*  M       (input) INTEGER
*          The number of rows of the matrix C.
*
*  N       (input) INTEGER
*          The number of columns of the matrix C.
*
*  L       (input) INTEGER
*          The number of entries of the vector V containing
*          the meaningful part of the Householder vectors.
*          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
*
*  V       (input) COMPLEX array, dimension (1+(L-1)*abs(INCV))
*          The vector v in the representation of H as returned by
*          CTZRZF. V is not used if TAU = 0.
*
*  INCV    (input) INTEGER
*          The increment between elements of v. INCV <> 0.
*
*  TAU     (input) COMPLEX
*          The value tau in the representation of H.
*
*  C       (input/output) COMPLEX array, dimension (LDC,N)
*          On entry, the M-by-N matrix C.
*          On exit, C is overwritten by the matrix H * C if SIDE = 'L',
*          or C * H if SIDE = 'R'.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C. LDC >= max(1,M).
*
*  WORK    (workspace) COMPLEX array, dimension
*                         (N) if SIDE = 'L'
*                      or (M) if SIDE = 'R'
*
*  Further Details
*  ===============
*
*  Based on contributions by
*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE, ZERO
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
     $                   ZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. External Subroutines ..
      EXTERNAL           CAXPY, CCOPY, CGEMV, CGERC, CGERU, CLACGV
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Executable Statements ..
*
      IF( LSAME( SIDE, 'L' ) ) THEN
*
*        Form  H * C
*
         IF( TAU.NE.ZERO ) THEN
*
*           w( 1:n ) = conjg( C( 1, 1:n ) )
*
            CALL CCOPY( N, C, LDC, WORK, 1 )
            CALL CLACGV( N, WORK, 1 )
*
*           w( 1:n ) = conjg( w( 1:n ) + C( m-l+1:m, 1:n )' * v( 1:l ) )
*
            CALL CGEMV( 'Conjugate transpose', L, N, ONE, C( M-L+1, 1 ),
     $                  LDC, V, INCV, ONE, WORK, 1 )
            CALL CLACGV( N, WORK, 1 )
*
*           C( 1, 1:n ) = C( 1, 1:n ) - tau * w( 1:n )
*
            CALL CAXPY( N, -TAU, WORK, 1, C, LDC )
*
*           C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
*                               tau * v( 1:l ) * conjg( w( 1:n )' )
*
            CALL CGERU( L, N, -TAU, V, INCV, WORK, 1, C( M-L+1, 1 ),
     $                  LDC )
         END IF
*
      ELSE
*
*        Form  C * H
*
         IF( TAU.NE.ZERO ) THEN
*
*           w( 1:m ) = C( 1:m, 1 )
*
            CALL CCOPY( M, C, 1, WORK, 1 )
*
*           w( 1:m ) = w( 1:m ) + C( 1:m, n-l+1:n, 1:n ) * v( 1:l )
*
            CALL CGEMV( 'No transpose', M, L, ONE, C( 1, N-L+1 ), LDC,
     $                  V, INCV, ONE, WORK, 1 )
*
*           C( 1:m, 1 ) = C( 1:m, 1 ) - tau * w( 1:m )
*
            CALL CAXPY( M, -TAU, WORK, 1, C, 1 )
*
*           C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
*                               tau * w( 1:m ) * v( 1:l )'
*
            CALL CGERC( M, L, -TAU, WORK, 1, V, INCV, C( 1, N-L+1 ),
     $                  LDC )
*
         END IF
*
      END IF
*
      RETURN
*
*     End of CLARZ
*
      END