summaryrefslogtreecommitdiff
path: root/SRC/clargv.f
blob: ba53cae6f008e0395b9b727775b7d8dff9c0bccd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
*> \brief \b CLARGV generates a vector of plane rotations with real cosines and complex sines.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLARGV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clargv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clargv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clargv.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CLARGV( N, X, INCX, Y, INCY, C, INCC )
*
*       .. Scalar Arguments ..
*       INTEGER            INCC, INCX, INCY, N
*       ..
*       .. Array Arguments ..
*       REAL               C( * )
*       COMPLEX            X( * ), Y( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CLARGV generates a vector of complex plane rotations with real
*> cosines, determined by elements of the complex vectors x and y.
*> For i = 1,2,...,n
*>
*>    (        c(i)   s(i) ) ( x(i) ) = ( r(i) )
*>    ( -conjg(s(i))  c(i) ) ( y(i) ) = (   0  )
*>
*>    where c(i)**2 + ABS(s(i))**2 = 1
*>
*> The following conventions are used (these are the same as in CLARTG,
*> but differ from the BLAS1 routine CROTG):
*>    If y(i)=0, then c(i)=1 and s(i)=0.
*>    If x(i)=0, then c(i)=0 and s(i) is chosen so that r(i) is real.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of plane rotations to be generated.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*>          X is COMPLEX array, dimension (1+(N-1)*INCX)
*>          On entry, the vector x.
*>          On exit, x(i) is overwritten by r(i), for i = 1,...,n.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*>          INCX is INTEGER
*>          The increment between elements of X. INCX > 0.
*> \endverbatim
*>
*> \param[in,out] Y
*> \verbatim
*>          Y is COMPLEX array, dimension (1+(N-1)*INCY)
*>          On entry, the vector y.
*>          On exit, the sines of the plane rotations.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*>          INCY is INTEGER
*>          The increment between elements of Y. INCY > 0.
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*>          C is REAL array, dimension (1+(N-1)*INCC)
*>          The cosines of the plane rotations.
*> \endverbatim
*>
*> \param[in] INCC
*> \verbatim
*>          INCC is INTEGER
*>          The increment between elements of C. INCC > 0.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexOTHERauxiliary
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  6-6-96 - Modified with a new algorithm by W. Kahan and J. Demmel
*>
*>  This version has a few statements commented out for thread safety
*>  (machine parameters are computed on each entry). 10 feb 03, SJH.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE CLARGV( N, X, INCX, Y, INCY, C, INCC )
*
*  -- LAPACK auxiliary routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            INCC, INCX, INCY, N
*     ..
*     .. Array Arguments ..
      REAL               C( * )
      COMPLEX            X( * ), Y( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               TWO, ONE, ZERO
      PARAMETER          ( TWO = 2.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0 )
      COMPLEX            CZERO
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
*     LOGICAL            FIRST
      INTEGER            COUNT, I, IC, IX, IY, J
      REAL               CS, D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN,
     $                   SAFMN2, SAFMX2, SCALE
      COMPLEX            F, FF, FS, G, GS, R, SN
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLAPY2
      EXTERNAL           SLAMCH, SLAPY2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, CMPLX, CONJG, INT, LOG, MAX, REAL,
     $                   SQRT
*     ..
*     .. Statement Functions ..
      REAL               ABS1, ABSSQ
*     ..
*     .. Save statement ..
*     SAVE               FIRST, SAFMX2, SAFMIN, SAFMN2
*     ..
*     .. Data statements ..
*     DATA               FIRST / .TRUE. /
*     ..
*     .. Statement Function definitions ..
      ABS1( FF ) = MAX( ABS( REAL( FF ) ), ABS( AIMAG( FF ) ) )
      ABSSQ( FF ) = REAL( FF )**2 + AIMAG( FF )**2
*     ..
*     .. Executable Statements ..
*
*     IF( FIRST ) THEN
*        FIRST = .FALSE.
         SAFMIN = SLAMCH( 'S' )
         EPS = SLAMCH( 'E' )
         SAFMN2 = SLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /
     $            LOG( SLAMCH( 'B' ) ) / TWO )
         SAFMX2 = ONE / SAFMN2
*     END IF
      IX = 1
      IY = 1
      IC = 1
      DO 60 I = 1, N
         F = X( IX )
         G = Y( IY )
*
*        Use identical algorithm as in CLARTG
*
         SCALE = MAX( ABS1( F ), ABS1( G ) )
         FS = F
         GS = G
         COUNT = 0
         IF( SCALE.GE.SAFMX2 ) THEN
   10       CONTINUE
            COUNT = COUNT + 1
            FS = FS*SAFMN2
            GS = GS*SAFMN2
            SCALE = SCALE*SAFMN2
            IF( SCALE.GE.SAFMX2 )
     $         GO TO 10
         ELSE IF( SCALE.LE.SAFMN2 ) THEN
            IF( G.EQ.CZERO ) THEN
               CS = ONE
               SN = CZERO
               R = F
               GO TO 50
            END IF
   20       CONTINUE
            COUNT = COUNT - 1
            FS = FS*SAFMX2
            GS = GS*SAFMX2
            SCALE = SCALE*SAFMX2
            IF( SCALE.LE.SAFMN2 )
     $         GO TO 20
         END IF
         F2 = ABSSQ( FS )
         G2 = ABSSQ( GS )
         IF( F2.LE.MAX( G2, ONE )*SAFMIN ) THEN
*
*           This is a rare case: F is very small.
*
            IF( F.EQ.CZERO ) THEN
               CS = ZERO
               R = SLAPY2( REAL( G ), AIMAG( G ) )
*              Do complex/real division explicitly with two real
*              divisions
               D = SLAPY2( REAL( GS ), AIMAG( GS ) )
               SN = CMPLX( REAL( GS ) / D, -AIMAG( GS ) / D )
               GO TO 50
            END IF
            F2S = SLAPY2( REAL( FS ), AIMAG( FS ) )
*           G2 and G2S are accurate
*           G2 is at least SAFMIN, and G2S is at least SAFMN2
            G2S = SQRT( G2 )
*           Error in CS from underflow in F2S is at most
*           UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS
*           If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN,
*           and so CS .lt. sqrt(SAFMIN)
*           If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN
*           and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS)
*           Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S
            CS = F2S / G2S
*           Make sure abs(FF) = 1
*           Do complex/real division explicitly with 2 real divisions
            IF( ABS1( F ).GT.ONE ) THEN
               D = SLAPY2( REAL( F ), AIMAG( F ) )
               FF = CMPLX( REAL( F ) / D, AIMAG( F ) / D )
            ELSE
               DR = SAFMX2*REAL( F )
               DI = SAFMX2*AIMAG( F )
               D = SLAPY2( DR, DI )
               FF = CMPLX( DR / D, DI / D )
            END IF
            SN = FF*CMPLX( REAL( GS ) / G2S, -AIMAG( GS ) / G2S )
            R = CS*F + SN*G
         ELSE
*
*           This is the most common case.
*           Neither F2 nor F2/G2 are less than SAFMIN
*           F2S cannot overflow, and it is accurate
*
            F2S = SQRT( ONE+G2 / F2 )
*           Do the F2S(real)*FS(complex) multiply with two real
*           multiplies
            R = CMPLX( F2S*REAL( FS ), F2S*AIMAG( FS ) )
            CS = ONE / F2S
            D = F2 + G2
*           Do complex/real division explicitly with two real divisions
            SN = CMPLX( REAL( R ) / D, AIMAG( R ) / D )
            SN = SN*CONJG( GS )
            IF( COUNT.NE.0 ) THEN
               IF( COUNT.GT.0 ) THEN
                  DO 30 J = 1, COUNT
                     R = R*SAFMX2
   30             CONTINUE
               ELSE
                  DO 40 J = 1, -COUNT
                     R = R*SAFMN2
   40             CONTINUE
               END IF
            END IF
         END IF
   50    CONTINUE
         C( IC ) = CS
         Y( IY ) = SN
         X( IX ) = R
         IC = IC + INCC
         IY = IY + INCY
         IX = IX + INCX
   60 CONTINUE
      RETURN
*
*     End of CLARGV
*
      END