summaryrefslogtreecommitdiff
path: root/SRC/clarfp.f
blob: 938ae78d6da0da19b88c4d25cbdcaef7981cc311 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
      SUBROUTINE CLARFP( N, ALPHA, X, INCX, TAU )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INCX, N
      COMPLEX            ALPHA, TAU
*     ..
*     .. Array Arguments ..
      COMPLEX            X( * )
*     ..
*
*  Purpose
*  =======
*
*  CLARFP generates a complex elementary reflector H of order n, such
*  that
*
*        H' * ( alpha ) = ( beta ),   H' * H = I.
*             (   x   )   (   0  )
*
*  where alpha and beta are scalars, beta is real and non-negative, and
*  x is an (n-1)-element complex vector.  H is represented in the form
*
*        H = I - tau * ( 1 ) * ( 1 v' ) ,
*                      ( v )
*
*  where tau is a complex scalar and v is a complex (n-1)-element
*  vector. Note that H is not hermitian.
*
*  If the elements of x are all zero and alpha is real, then tau = 0
*  and H is taken to be the unit matrix.
*
*  Otherwise  1 <= real(tau) <= 2  and  abs(tau-1) <= 1 .
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the elementary reflector.
*
*  ALPHA   (input/output) COMPLEX
*          On entry, the value alpha.
*          On exit, it is overwritten with the value beta.
*
*  X       (input/output) COMPLEX array, dimension
*                         (1+(N-2)*abs(INCX))
*          On entry, the vector x.
*          On exit, it is overwritten with the vector v.
*
*  INCX    (input) INTEGER
*          The increment between elements of X. INCX > 0.
*
*  TAU     (output) COMPLEX
*          The value tau.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               TWO, ONE, ZERO
      PARAMETER          ( TWO = 2.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J, KNT
      REAL               ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM
*     ..
*     .. External Functions ..
      REAL               SCNRM2, SLAMCH, SLAPY3, SLAPY2
      COMPLEX            CLADIV
      EXTERNAL           SCNRM2, SLAMCH, SLAPY3, SLAPY2, CLADIV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, CMPLX, REAL, SIGN
*     ..
*     .. External Subroutines ..
      EXTERNAL           CSCAL, CSSCAL
*     ..
*     .. Executable Statements ..
*
      IF( N.LE.0 ) THEN
         TAU = ZERO
         RETURN
      END IF
*
      XNORM = SCNRM2( N-1, X, INCX )
      ALPHR = REAL( ALPHA )
      ALPHI = AIMAG( ALPHA )
*
      IF( XNORM.EQ.ZERO ) THEN
*
*        H  =  [1-alpha/abs(alpha) 0; 0 I], sign chosen so ALPHA >= 0.
*
         IF( ALPHI.EQ.ZERO ) THEN
            IF( ALPHR.GE.ZERO ) THEN
!              When TAU.eq.ZERO, the vector is special-cased to be
!              all zeros in the application routines.  We do not need
!              to clear it.
               TAU = ZERO
            ELSE
!              However, the application routines rely on explicit
!              zero checks when TAU.ne.ZERO, and we must clear X.
               TAU = TWO
               DO J = 1, N-1
                  X( 1 + (J-1)*INCX ) = ZERO
               END DO
               ALPHA = -ALPHA
            END IF
         ELSE
!           Only "reflecting" the diagonal entry to be real and non-negative.
            XNORM = SLAPY2( ALPHR, ALPHI )
            TAU = CMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
            DO J = 1, N-1
               X( 1 + (J-1)*INCX ) = ZERO
            END DO
            ALPHA = XNORM
         END IF
      ELSE
*
*        general case
*
         BETA = SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
         SAFMIN = SLAMCH( 'S' ) / SLAMCH( 'E' )
         RSAFMN = ONE / SAFMIN
*
         KNT = 0
         IF( ABS( BETA ).LT.SAFMIN ) THEN
*
*           XNORM, BETA may be inaccurate; scale X and recompute them
*
   10       CONTINUE
            KNT = KNT + 1
            CALL CSSCAL( N-1, RSAFMN, X, INCX )
            BETA = BETA*RSAFMN
            ALPHI = ALPHI*RSAFMN
            ALPHR = ALPHR*RSAFMN
            IF( ABS( BETA ).LT.SAFMIN )
     $         GO TO 10
*
*           New BETA is at most 1, at least SAFMIN
*
            XNORM = SCNRM2( N-1, X, INCX )
            ALPHA = CMPLX( ALPHR, ALPHI )
            BETA = SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
         END IF
         ALPHA = ALPHA + BETA
         IF( BETA.LT.ZERO ) THEN
            BETA = -BETA
            TAU = -ALPHA / BETA
         ELSE
            ALPHR = ALPHI * (ALPHI/REAL( ALPHA ))
            ALPHR = ALPHR + XNORM * (XNORM/REAL( ALPHA ))
            TAU = CMPLX( ALPHR/BETA, -ALPHI/BETA )
            ALPHA = CMPLX( -ALPHR, ALPHI )
         END IF
         ALPHA = CLADIV( CMPLX( ONE ), ALPHA )
         CALL CSCAL( N-1, ALPHA, X, INCX )
*
*        If BETA is subnormal, it may lose relative accuracy
*
         DO 20 J = 1, KNT
            BETA = BETA*SAFMIN
 20      CONTINUE
         ALPHA = BETA
      END IF
*
      RETURN
*
*     End of CLARFP
*
      END