summaryrefslogtreecommitdiff
path: root/SRC/clarfgp.f
blob: 4d66e9dae4febfabd4544f3f9c104d9c6cbbe5a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
*> \brief \b CLARFGP
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition
*  ==========
*
*       SUBROUTINE CLARFGP( N, ALPHA, X, INCX, TAU )
* 
*       .. Scalar Arguments ..
*       INTEGER            INCX, N
*       COMPLEX            ALPHA, TAU
*       ..
*       .. Array Arguments ..
*       COMPLEX            X( * )
*       ..
*  
*  Purpose
*  =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> CLARFGP generates a complex elementary reflector H of order n, such
*> that
*>
*>       H**H * ( alpha ) = ( beta ),   H**H * H = I.
*>              (   x   )   (   0  )
*>
*> where alpha and beta are scalars, beta is real and non-negative, and
*> x is an (n-1)-element complex vector.  H is represented in the form
*>
*>       H = I - tau * ( 1 ) * ( 1 v**H ) ,
*>                     ( v )
*>
*> where tau is a complex scalar and v is a complex (n-1)-element
*> vector. Note that H is not hermitian.
*>
*> If the elements of x are all zero and alpha is real, then tau = 0
*> and H is taken to be the unit matrix.
*>
*>\endverbatim
*
*  Arguments
*  =========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the elementary reflector.
*> \endverbatim
*>
*> \param[in,out] ALPHA
*> \verbatim
*>          ALPHA is COMPLEX
*>          On entry, the value alpha.
*>          On exit, it is overwritten with the value beta.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*>          X is COMPLEX array, dimension
*>                         (1+(N-2)*abs(INCX))
*>          On entry, the vector x.
*>          On exit, it is overwritten with the vector v.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*>          INCX is INTEGER
*>          The increment between elements of X. INCX > 0.
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*>          TAU is COMPLEX
*>          The value tau.
*> \endverbatim
*>
*
*  Authors
*  =======
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complexOTHERauxiliary
*
*  =====================================================================
      SUBROUTINE CLARFGP( N, ALPHA, X, INCX, TAU )
*
*  -- LAPACK auxiliary routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            INCX, N
      COMPLEX            ALPHA, TAU
*     ..
*     .. Array Arguments ..
      COMPLEX            X( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               TWO, ONE, ZERO
      PARAMETER          ( TWO = 2.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J, KNT
      REAL               ALPHI, ALPHR, BETA, BIGNUM, SMLNUM, XNORM
      COMPLEX            SAVEALPHA
*     ..
*     .. External Functions ..
      REAL               SCNRM2, SLAMCH, SLAPY3, SLAPY2
      COMPLEX            CLADIV
      EXTERNAL           SCNRM2, SLAMCH, SLAPY3, SLAPY2, CLADIV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, CMPLX, REAL, SIGN
*     ..
*     .. External Subroutines ..
      EXTERNAL           CSCAL, CSSCAL
*     ..
*     .. Executable Statements ..
*
      IF( N.LE.0 ) THEN
         TAU = ZERO
         RETURN
      END IF
*
      XNORM = SCNRM2( N-1, X, INCX )
      ALPHR = REAL( ALPHA )
      ALPHI = AIMAG( ALPHA )
*
      IF( XNORM.EQ.ZERO ) THEN
*
*        H  =  [1-alpha/abs(alpha) 0; 0 I], sign chosen so ALPHA >= 0.
*
         IF( ALPHI.EQ.ZERO ) THEN
            IF( ALPHR.GE.ZERO ) THEN
*              When TAU.eq.ZERO, the vector is special-cased to be
*              all zeros in the application routines.  We do not need
*              to clear it.
               TAU = ZERO
            ELSE
*              However, the application routines rely on explicit
*              zero checks when TAU.ne.ZERO, and we must clear X.
               TAU = TWO
               DO J = 1, N-1
                  X( 1 + (J-1)*INCX ) = ZERO
               END DO
               ALPHA = -ALPHA
            END IF
         ELSE
*           Only "reflecting" the diagonal entry to be real and non-negative.
            XNORM = SLAPY2( ALPHR, ALPHI )
            TAU = CMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
            DO J = 1, N-1
               X( 1 + (J-1)*INCX ) = ZERO
            END DO
            ALPHA = XNORM
         END IF
      ELSE
*
*        general case
*
         BETA = SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
         SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'E' )
         BIGNUM = ONE / SMLNUM
*
         KNT = 0
         IF( ABS( BETA ).LT.SMLNUM ) THEN
*
*           XNORM, BETA may be inaccurate; scale X and recompute them
*
   10       CONTINUE
            KNT = KNT + 1
            CALL CSSCAL( N-1, BIGNUM, X, INCX )
            BETA = BETA*BIGNUM
            ALPHI = ALPHI*BIGNUM
            ALPHR = ALPHR*BIGNUM
            IF( ABS( BETA ).LT.SMLNUM )
     $         GO TO 10
*
*           New BETA is at most 1, at least SMLNUM
*
            XNORM = SCNRM2( N-1, X, INCX )
            ALPHA = CMPLX( ALPHR, ALPHI )
            BETA = SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
         END IF
         SAVEALPHA = ALPHA
         ALPHA = ALPHA + BETA
         IF( BETA.LT.ZERO ) THEN
            BETA = -BETA
            TAU = -ALPHA / BETA
         ELSE
            ALPHR = ALPHI * (ALPHI/REAL( ALPHA ))
            ALPHR = ALPHR + XNORM * (XNORM/REAL( ALPHA ))
            TAU = CMPLX( ALPHR/BETA, -ALPHI/BETA )
            ALPHA = CMPLX( -ALPHR, ALPHI )
         END IF
         ALPHA = CLADIV( CMPLX( ONE ), ALPHA )
*
         IF ( ABS(TAU).LE.SMLNUM ) THEN
*
*           In the case where the computed TAU ends up being a denormalized number,
*           it loses relative accuracy. This is a BIG problem. Solution: flush TAU 
*           to ZERO (or TWO or whatever makes a nonnegative real number for BETA).
*
*           (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.)
*           (Thanks Pat. Thanks MathWorks.)
*
            ALPHR = REAL( SAVEALPHA )
            ALPHI = AIMAG( SAVEALPHA )
            IF( ALPHI.EQ.ZERO ) THEN
               IF( ALPHR.GE.ZERO ) THEN
                  TAU = ZERO
               ELSE
                  TAU = TWO
                  DO J = 1, N-1
                     X( 1 + (J-1)*INCX ) = ZERO
                  END DO
                  BETA = -SAVEALPHA
               END IF
            ELSE
               XNORM = SLAPY2( ALPHR, ALPHI )
               TAU = CMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
               DO J = 1, N-1
                  X( 1 + (J-1)*INCX ) = ZERO
               END DO
               BETA = XNORM
            END IF
*
         ELSE 
*
*           This is the general case.
*
            CALL CSCAL( N-1, ALPHA, X, INCX )
*
         END IF
*
*        If BETA is subnormal, it may lose relative accuracy
*
         DO 20 J = 1, KNT
            BETA = BETA*SMLNUM
 20      CONTINUE
         ALPHA = BETA
      END IF
*
      RETURN
*
*     End of CLARFGP
*
      END