1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
*> \brief \b CLAPLL measures the linear dependence of two vectors.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLAPLL + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clapll.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clapll.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clapll.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CLAPLL( N, X, INCX, Y, INCY, SSMIN )
*
* .. Scalar Arguments ..
* INTEGER INCX, INCY, N
* REAL SSMIN
* ..
* .. Array Arguments ..
* COMPLEX X( * ), Y( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Given two column vectors X and Y, let
*>
*> A = ( X Y ).
*>
*> The subroutine first computes the QR factorization of A = Q*R,
*> and then computes the SVD of the 2-by-2 upper triangular matrix R.
*> The smaller singular value of R is returned in SSMIN, which is used
*> as the measurement of the linear dependency of the vectors X and Y.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The length of the vectors X and Y.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is COMPLEX array, dimension (1+(N-1)*INCX)
*> On entry, X contains the N-vector X.
*> On exit, X is overwritten.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> The increment between successive elements of X. INCX > 0.
*> \endverbatim
*>
*> \param[in,out] Y
*> \verbatim
*> Y is COMPLEX array, dimension (1+(N-1)*INCY)
*> On entry, Y contains the N-vector Y.
*> On exit, Y is overwritten.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> The increment between successive elements of Y. INCY > 0.
*> \endverbatim
*>
*> \param[out] SSMIN
*> \verbatim
*> SSMIN is REAL
*> The smallest singular value of the N-by-2 matrix A = ( X Y ).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexOTHERauxiliary
*
* =====================================================================
SUBROUTINE CLAPLL( N, X, INCX, Y, INCY, SSMIN )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER INCX, INCY, N
REAL SSMIN
* ..
* .. Array Arguments ..
COMPLEX X( * ), Y( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
COMPLEX CONE
PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
REAL SSMAX
COMPLEX A11, A12, A22, C, TAU
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CONJG
* ..
* .. External Functions ..
COMPLEX CDOTC
EXTERNAL CDOTC
* ..
* .. External Subroutines ..
EXTERNAL CAXPY, CLARFG, SLAS2
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.1 ) THEN
SSMIN = ZERO
RETURN
END IF
*
* Compute the QR factorization of the N-by-2 matrix ( X Y )
*
CALL CLARFG( N, X( 1 ), X( 1+INCX ), INCX, TAU )
A11 = X( 1 )
X( 1 ) = CONE
*
C = -CONJG( TAU )*CDOTC( N, X, INCX, Y, INCY )
CALL CAXPY( N, C, X, INCX, Y, INCY )
*
CALL CLARFG( N-1, Y( 1+INCY ), Y( 1+2*INCY ), INCY, TAU )
*
A12 = Y( 1 )
A22 = Y( 1+INCY )
*
* Compute the SVD of 2-by-2 Upper triangular matrix.
*
CALL SLAS2( ABS( A11 ), ABS( A12 ), ABS( A22 ), SSMIN, SSMAX )
*
RETURN
*
* End of CLAPLL
*
END
|