1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
REAL FUNCTION CLANSB( NORM, UPLO, N, K, AB, LDAB,
$ WORK )
*
* -- LAPACK auxiliary routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER NORM, UPLO
INTEGER K, LDAB, N
* ..
* .. Array Arguments ..
REAL WORK( * )
COMPLEX AB( LDAB, * )
* ..
*
* Purpose
* =======
*
* CLANSB returns the value of the one norm, or the Frobenius norm, or
* the infinity norm, or the element of largest absolute value of an
* n by n symmetric band matrix A, with k super-diagonals.
*
* Description
* ===========
*
* CLANSB returns the value
*
* CLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
* (
* ( norm1(A), NORM = '1', 'O' or 'o'
* (
* ( normI(A), NORM = 'I' or 'i'
* (
* ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*
* where norm1 denotes the one norm of a matrix (maximum column sum),
* normI denotes the infinity norm of a matrix (maximum row sum) and
* normF denotes the Frobenius norm of a matrix (square root of sum of
* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
*
* Arguments
* =========
*
* NORM (input) CHARACTER*1
* Specifies the value to be returned in CLANSB as described
* above.
*
* UPLO (input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* band matrix A is supplied.
* = 'U': Upper triangular part is supplied
* = 'L': Lower triangular part is supplied
*
* N (input) INTEGER
* The order of the matrix A. N >= 0. When N = 0, CLANSB is
* set to zero.
*
* K (input) INTEGER
* The number of super-diagonals or sub-diagonals of the
* band matrix A. K >= 0.
*
* AB (input) COMPLEX array, dimension (LDAB,N)
* The upper or lower triangle of the symmetric band matrix A,
* stored in the first K+1 rows of AB. The j-th column of A is
* stored in the j-th column of the array AB as follows:
* if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
*
* LDAB (input) INTEGER
* The leading dimension of the array AB. LDAB >= K+1.
*
* WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
* WORK is not referenced.
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, L
REAL ABSA, SCALE, SUM, VALUE
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CLASSQ
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
IF( N.EQ.0 ) THEN
VALUE = ZERO
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
VALUE = ZERO
IF( LSAME( UPLO, 'U' ) ) THEN
DO 20 J = 1, N
DO 10 I = MAX( K+2-J, 1 ), K + 1
VALUE = MAX( VALUE, ABS( AB( I, J ) ) )
10 CONTINUE
20 CONTINUE
ELSE
DO 40 J = 1, N
DO 30 I = 1, MIN( N+1-J, K+1 )
VALUE = MAX( VALUE, ABS( AB( I, J ) ) )
30 CONTINUE
40 CONTINUE
END IF
ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
$ ( NORM.EQ.'1' ) ) THEN
*
* Find normI(A) ( = norm1(A), since A is symmetric).
*
VALUE = ZERO
IF( LSAME( UPLO, 'U' ) ) THEN
DO 60 J = 1, N
SUM = ZERO
L = K + 1 - J
DO 50 I = MAX( 1, J-K ), J - 1
ABSA = ABS( AB( L+I, J ) )
SUM = SUM + ABSA
WORK( I ) = WORK( I ) + ABSA
50 CONTINUE
WORK( J ) = SUM + ABS( AB( K+1, J ) )
60 CONTINUE
DO 70 I = 1, N
VALUE = MAX( VALUE, WORK( I ) )
70 CONTINUE
ELSE
DO 80 I = 1, N
WORK( I ) = ZERO
80 CONTINUE
DO 100 J = 1, N
SUM = WORK( J ) + ABS( AB( 1, J ) )
L = 1 - J
DO 90 I = J + 1, MIN( N, J+K )
ABSA = ABS( AB( L+I, J ) )
SUM = SUM + ABSA
WORK( I ) = WORK( I ) + ABSA
90 CONTINUE
VALUE = MAX( VALUE, SUM )
100 CONTINUE
END IF
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
*
SCALE = ZERO
SUM = ONE
IF( K.GT.0 ) THEN
IF( LSAME( UPLO, 'U' ) ) THEN
DO 110 J = 2, N
CALL CLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ),
$ 1, SCALE, SUM )
110 CONTINUE
L = K + 1
ELSE
DO 120 J = 1, N - 1
CALL CLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE,
$ SUM )
120 CONTINUE
L = 1
END IF
SUM = 2*SUM
ELSE
L = 1
END IF
CALL CLASSQ( N, AB( L, 1 ), LDAB, SCALE, SUM )
VALUE = SCALE*SQRT( SUM )
END IF
*
CLANSB = VALUE
RETURN
*
* End of CLANSB
*
END
|