summaryrefslogtreecommitdiff
path: root/SRC/clanhb.f
blob: 2b034b19b5ee3a39465236a2369ab52e716b25c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
*> \brief \b CLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLANHB + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clanhb.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clanhb.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clanhb.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       REAL             FUNCTION CLANHB( NORM, UPLO, N, K, AB, LDAB,
*                        WORK )
*
*       .. Scalar Arguments ..
*       CHARACTER          NORM, UPLO
*       INTEGER            K, LDAB, N
*       ..
*       .. Array Arguments ..
*       REAL               WORK( * )
*       COMPLEX            AB( LDAB, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CLANHB  returns the value of the one norm,  or the Frobenius norm, or
*> the  infinity norm,  or the element of  largest absolute value  of an
*> n by n hermitian band matrix A,  with k super-diagonals.
*> \endverbatim
*>
*> \return CLANHB
*> \verbatim
*>
*>    CLANHB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*>             (
*>             ( norm1(A),         NORM = '1', 'O' or 'o'
*>             (
*>             ( normI(A),         NORM = 'I' or 'i'
*>             (
*>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*>
*> where  norm1  denotes the  one norm of a matrix (maximum column sum),
*> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*> normF  denotes the  Frobenius norm of a matrix (square root of sum of
*> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] NORM
*> \verbatim
*>          NORM is CHARACTER*1
*>          Specifies the value to be returned in CLANHB as described
*>          above.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          band matrix A is supplied.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.  When N = 0, CLANHB is
*>          set to zero.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of super-diagonals or sub-diagonals of the
*>          band matrix A.  K >= 0.
*> \endverbatim
*>
*> \param[in] AB
*> \verbatim
*>          AB is COMPLEX array, dimension (LDAB,N)
*>          The upper or lower triangle of the hermitian band matrix A,
*>          stored in the first K+1 rows of AB.  The j-th column of A is
*>          stored in the j-th column of the array AB as follows:
*>          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
*>          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
*>          Note that the imaginary parts of the diagonal elements need
*>          not be set and are assumed to be zero.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= K+1.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (MAX(1,LWORK)),
*>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
*>          WORK is not referenced.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexOTHERauxiliary
*
*  =====================================================================
      REAL             FUNCTION CLANHB( NORM, UPLO, N, K, AB, LDAB,
     $                 WORK )
*
*  -- LAPACK auxiliary routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          NORM, UPLO
      INTEGER            K, LDAB, N
*     ..
*     .. Array Arguments ..
      REAL               WORK( * )
      COMPLEX            AB( LDAB, * )
*     ..
*
* =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, L
      REAL               ABSA, SCALE, SUM, VALUE
*     ..
*     .. External Functions ..
      LOGICAL            LSAME, SISNAN
      EXTERNAL           LSAME, SISNAN
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLASSQ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, REAL, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( N.EQ.0 ) THEN
         VALUE = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         VALUE = ZERO
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 20 J = 1, N
               DO 10 I = MAX( K+2-J, 1 ), K
                  SUM = ABS( AB( I, J ) )
                  IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
   10          CONTINUE
               SUM = ABS( REAL( AB( K+1, J ) ) )
               IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
   20       CONTINUE
         ELSE
            DO 40 J = 1, N
               SUM = ABS( REAL( AB( 1, J ) ) )
               IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
               DO 30 I = 2, MIN( N+1-J, K+1 )
                  SUM = ABS( AB( I, J ) )
                  IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
   30          CONTINUE
   40       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
     $         ( NORM.EQ.'1' ) ) THEN
*
*        Find normI(A) ( = norm1(A), since A is hermitian).
*
         VALUE = ZERO
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 60 J = 1, N
               SUM = ZERO
               L = K + 1 - J
               DO 50 I = MAX( 1, J-K ), J - 1
                  ABSA = ABS( AB( L+I, J ) )
                  SUM = SUM + ABSA
                  WORK( I ) = WORK( I ) + ABSA
   50          CONTINUE
               WORK( J ) = SUM + ABS( REAL( AB( K+1, J ) ) )
   60       CONTINUE
            DO 70 I = 1, N
               SUM = WORK( I )
               IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
   70       CONTINUE
         ELSE
            DO 80 I = 1, N
               WORK( I ) = ZERO
   80       CONTINUE
            DO 100 J = 1, N
               SUM = WORK( J ) + ABS( REAL( AB( 1, J ) ) )
               L = 1 - J
               DO 90 I = J + 1, MIN( N, J+K )
                  ABSA = ABS( AB( L+I, J ) )
                  SUM = SUM + ABSA
                  WORK( I ) = WORK( I ) + ABSA
   90          CONTINUE
               IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  100       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*
         SCALE = ZERO
         SUM = ONE
         IF( K.GT.0 ) THEN
            IF( LSAME( UPLO, 'U' ) ) THEN
               DO 110 J = 2, N
                  CALL CLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ),
     $                         1, SCALE, SUM )
  110          CONTINUE
               L = K + 1
            ELSE
               DO 120 J = 1, N - 1
                  CALL CLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE,
     $                         SUM )
  120          CONTINUE
               L = 1
            END IF
            SUM = 2*SUM
         ELSE
            L = 1
         END IF
         DO 130 J = 1, N
            IF( REAL( AB( L, J ) ).NE.ZERO ) THEN
               ABSA = ABS( REAL( AB( L, J ) ) )
               IF( SCALE.LT.ABSA ) THEN
                  SUM = ONE + SUM*( SCALE / ABSA )**2
                  SCALE = ABSA
               ELSE
                  SUM = SUM + ( ABSA / SCALE )**2
               END IF
            END IF
  130    CONTINUE
         VALUE = SCALE*SQRT( SUM )
      END IF
*
      CLANHB = VALUE
      RETURN
*
*     End of CLANHB
*
      END