summaryrefslogtreecommitdiff
path: root/SRC/clangb.f
blob: 78210843510115a9a53657e19597b4212b33d5f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
      REAL             FUNCTION CLANGB( NORM, N, KL, KU, AB, LDAB,
     $                 WORK )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            KL, KU, LDAB, N
*     ..
*     .. Array Arguments ..
      REAL               WORK( * )
      COMPLEX            AB( LDAB, * )
*     ..
*
*  Purpose
*  =======
*
*  CLANGB  returns the value of the one norm,  or the Frobenius norm, or
*  the  infinity norm,  or the element of  largest absolute value  of an
*  n by n band matrix  A,  with kl sub-diagonals and ku super-diagonals.
*
*  Description
*  ===========
*
*  CLANGB returns the value
*
*     CLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*              (
*              ( norm1(A),         NORM = '1', 'O' or 'o'
*              (
*              ( normI(A),         NORM = 'I' or 'i'
*              (
*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*
*  where  norm1  denotes the  one norm of a matrix (maximum column sum),
*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*  normF  denotes the  Frobenius norm of a matrix (square root of sum of
*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
*
*  Arguments
*  =========
*
*  NORM    (input) CHARACTER*1
*          Specifies the value to be returned in CLANGB as described
*          above.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.  When N = 0, CLANGB is
*          set to zero.
*
*  KL      (input) INTEGER
*          The number of sub-diagonals of the matrix A.  KL >= 0.
*
*  KU      (input) INTEGER
*          The number of super-diagonals of the matrix A.  KU >= 0.
*
*  AB      (input) COMPLEX array, dimension (LDAB,N)
*          The band matrix A, stored in rows 1 to KL+KU+1.  The j-th
*          column of A is stored in the j-th column of the array AB as
*          follows:
*          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array AB.  LDAB >= KL+KU+1.
*
*  WORK    (workspace) REAL array, dimension (MAX(1,LWORK)),
*          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
*          referenced.
*
* =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, K, L
      REAL               SCALE, SUM, VALUE
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLASSQ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( N.EQ.0 ) THEN
         VALUE = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         VALUE = ZERO
         DO 20 J = 1, N
            DO 10 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
               VALUE = MAX( VALUE, ABS( AB( I, J ) ) )
   10       CONTINUE
   20    CONTINUE
      ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
*
*        Find norm1(A).
*
         VALUE = ZERO
         DO 40 J = 1, N
            SUM = ZERO
            DO 30 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
               SUM = SUM + ABS( AB( I, J ) )
   30       CONTINUE
            VALUE = MAX( VALUE, SUM )
   40    CONTINUE
      ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
*        Find normI(A).
*
         DO 50 I = 1, N
            WORK( I ) = ZERO
   50    CONTINUE
         DO 70 J = 1, N
            K = KU + 1 - J
            DO 60 I = MAX( 1, J-KU ), MIN( N, J+KL )
               WORK( I ) = WORK( I ) + ABS( AB( K+I, J ) )
   60       CONTINUE
   70    CONTINUE
         VALUE = ZERO
         DO 80 I = 1, N
            VALUE = MAX( VALUE, WORK( I ) )
   80    CONTINUE
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*
         SCALE = ZERO
         SUM = ONE
         DO 90 J = 1, N
            L = MAX( 1, J-KU )
            K = KU + 1 - J + L
            CALL CLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1, SCALE, SUM )
   90    CONTINUE
         VALUE = SCALE*SQRT( SUM )
      END IF
*
      CLANGB = VALUE
      RETURN
*
*     End of CLANGB
*
      END