summaryrefslogtreecommitdiff
path: root/SRC/clags2.f
blob: b6dc1b04b8bda550c7f52ea32b7e09ea8ef3b67f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
*> \brief \b CLAGS2
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition
*  ==========
*
*       SUBROUTINE CLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV,
*                          SNV, CSQ, SNQ )
* 
*       .. Scalar Arguments ..
*       LOGICAL            UPPER
*       REAL               A1, A3, B1, B3, CSQ, CSU, CSV
*       COMPLEX            A2, B2, SNQ, SNU, SNV
*       ..
*  
*  Purpose
*  =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> CLAGS2 computes 2-by-2 unitary matrices U, V and Q, such
*> that if ( UPPER ) then
*>
*>           U**H *A*Q = U**H *( A1 A2 )*Q = ( x  0  )
*>                             ( 0  A3 )     ( x  x  )
*> and
*>           V**H*B*Q = V**H *( B1 B2 )*Q = ( x  0  )
*>                            ( 0  B3 )     ( x  x  )
*>
*> or if ( .NOT.UPPER ) then
*>
*>           U**H *A*Q = U**H *( A1 0  )*Q = ( x  x  )
*>                             ( A2 A3 )     ( 0  x  )
*> and
*>           V**H *B*Q = V**H *( B1 0  )*Q = ( x  x  )
*>                             ( B2 B3 )     ( 0  x  )
*> where
*>
*>   U = (   CSU    SNU ), V = (  CSV    SNV ),
*>       ( -SNU**H  CSU )      ( -SNV**H CSV )
*>
*>   Q = (   CSQ    SNQ )
*>       ( -SNQ**H  CSQ )
*>
*> The rows of the transformed A and B are parallel. Moreover, if the
*> input 2-by-2 matrix A is not zero, then the transformed (1,1) entry
*> of A is not zero. If the input matrices A and B are both not zero,
*> then the transformed (2,2) element of B is not zero, except when the
*> first rows of input A and B are parallel and the second rows are
*> zero.
*>
*>\endverbatim
*
*  Arguments
*  =========
*
*> \param[in] UPPER
*> \verbatim
*>          UPPER is LOGICAL
*>          = .TRUE.: the input matrices A and B are upper triangular.
*>          = .FALSE.: the input matrices A and B are lower triangular.
*> \endverbatim
*>
*> \param[in] A1
*> \verbatim
*>          A1 is REAL
*> \endverbatim
*>
*> \param[in] A2
*> \verbatim
*>          A2 is COMPLEX
*> \endverbatim
*>
*> \param[in] A3
*> \verbatim
*>          A3 is REAL
*>          On entry, A1, A2 and A3 are elements of the input 2-by-2
*>          upper (lower) triangular matrix A.
*> \endverbatim
*>
*> \param[in] B1
*> \verbatim
*>          B1 is REAL
*> \endverbatim
*>
*> \param[in] B2
*> \verbatim
*>          B2 is COMPLEX
*> \endverbatim
*>
*> \param[in] B3
*> \verbatim
*>          B3 is REAL
*>          On entry, B1, B2 and B3 are elements of the input 2-by-2
*>          upper (lower) triangular matrix B.
*> \endverbatim
*>
*> \param[out] CSU
*> \verbatim
*>          CSU is REAL
*> \endverbatim
*>
*> \param[out] SNU
*> \verbatim
*>          SNU is COMPLEX
*>          The desired unitary matrix U.
*> \endverbatim
*>
*> \param[out] CSV
*> \verbatim
*>          CSV is REAL
*> \endverbatim
*>
*> \param[out] SNV
*> \verbatim
*>          SNV is COMPLEX
*>          The desired unitary matrix V.
*> \endverbatim
*>
*> \param[out] CSQ
*> \verbatim
*>          CSQ is REAL
*> \endverbatim
*>
*> \param[out] SNQ
*> \verbatim
*>          SNQ is COMPLEX
*>          The desired unitary matrix Q.
*> \endverbatim
*>
*
*  Authors
*  =======
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complexOTHERauxiliary
*
*  =====================================================================
      SUBROUTINE CLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV,
     $                   SNV, CSQ, SNQ )
*
*  -- LAPACK auxiliary routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      LOGICAL            UPPER
      REAL               A1, A3, B1, B3, CSQ, CSU, CSV
      COMPLEX            A2, B2, SNQ, SNU, SNV
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      REAL               A, AUA11, AUA12, AUA21, AUA22, AVB11, AVB12,
     $                   AVB21, AVB22, CSL, CSR, D, FB, FC, S1, S2, SNL,
     $                   SNR, UA11R, UA22R, VB11R, VB22R
      COMPLEX            B, C, D1, R, T, UA11, UA12, UA21, UA22, VB11,
     $                   VB12, VB21, VB22
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLARTG, SLASV2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, CMPLX, CONJG, REAL
*     ..
*     .. Statement Functions ..
      REAL               ABS1
*     ..
*     .. Statement Function definitions ..
      ABS1( T ) = ABS( REAL( T ) ) + ABS( AIMAG( T ) )
*     ..
*     .. Executable Statements ..
*
      IF( UPPER ) THEN
*
*        Input matrices A and B are upper triangular matrices
*
*        Form matrix C = A*adj(B) = ( a b )
*                                   ( 0 d )
*
         A = A1*B3
         D = A3*B1
         B = A2*B1 - A1*B2
         FB = ABS( B )
*
*        Transform complex 2-by-2 matrix C to real matrix by unitary
*        diagonal matrix diag(1,D1).
*
         D1 = ONE
         IF( FB.NE.ZERO )
     $      D1 = B / FB
*
*        The SVD of real 2 by 2 triangular C
*
*         ( CSL -SNL )*( A B )*(  CSR  SNR ) = ( R 0 )
*         ( SNL  CSL ) ( 0 D ) ( -SNR  CSR )   ( 0 T )
*
         CALL SLASV2( A, FB, D, S1, S2, SNR, CSR, SNL, CSL )
*
         IF( ABS( CSL ).GE.ABS( SNL ) .OR. ABS( CSR ).GE.ABS( SNR ) )
     $        THEN
*
*           Compute the (1,1) and (1,2) elements of U**H *A and V**H *B,
*           and (1,2) element of |U|**H *|A| and |V|**H *|B|.
*
            UA11R = CSL*A1
            UA12 = CSL*A2 + D1*SNL*A3
*
            VB11R = CSR*B1
            VB12 = CSR*B2 + D1*SNR*B3
*
            AUA12 = ABS( CSL )*ABS1( A2 ) + ABS( SNL )*ABS( A3 )
            AVB12 = ABS( CSR )*ABS1( B2 ) + ABS( SNR )*ABS( B3 )
*
*           zero (1,2) elements of U**H *A and V**H *B
*
            IF( ( ABS( UA11R )+ABS1( UA12 ) ).EQ.ZERO ) THEN
               CALL CLARTG( -CMPLX( VB11R ), CONJG( VB12 ), CSQ, SNQ,
     $                      R )
            ELSE IF( ( ABS( VB11R )+ABS1( VB12 ) ).EQ.ZERO ) THEN
               CALL CLARTG( -CMPLX( UA11R ), CONJG( UA12 ), CSQ, SNQ,
     $                      R )
            ELSE IF( AUA12 / ( ABS( UA11R )+ABS1( UA12 ) ).LE.AVB12 /
     $               ( ABS( VB11R )+ABS1( VB12 ) ) ) THEN
               CALL CLARTG( -CMPLX( UA11R ), CONJG( UA12 ), CSQ, SNQ,
     $                      R )
            ELSE
               CALL CLARTG( -CMPLX( VB11R ), CONJG( VB12 ), CSQ, SNQ,
     $                      R )
            END IF
*
            CSU = CSL
            SNU = -D1*SNL
            CSV = CSR
            SNV = -D1*SNR
*
         ELSE
*
*           Compute the (2,1) and (2,2) elements of U**H *A and V**H *B,
*           and (2,2) element of |U|**H *|A| and |V|**H *|B|.
*
            UA21 = -CONJG( D1 )*SNL*A1
            UA22 = -CONJG( D1 )*SNL*A2 + CSL*A3
*
            VB21 = -CONJG( D1 )*SNR*B1
            VB22 = -CONJG( D1 )*SNR*B2 + CSR*B3
*
            AUA22 = ABS( SNL )*ABS1( A2 ) + ABS( CSL )*ABS( A3 )
            AVB22 = ABS( SNR )*ABS1( B2 ) + ABS( CSR )*ABS( B3 )
*
*           zero (2,2) elements of U**H *A and V**H *B, and then swap.
*
            IF( ( ABS1( UA21 )+ABS1( UA22 ) ).EQ.ZERO ) THEN
               CALL CLARTG( -CONJG( VB21 ), CONJG( VB22 ), CSQ, SNQ, R )
            ELSE IF( ( ABS1( VB21 )+ABS( VB22 ) ).EQ.ZERO ) THEN
               CALL CLARTG( -CONJG( UA21 ), CONJG( UA22 ), CSQ, SNQ, R )
            ELSE IF( AUA22 / ( ABS1( UA21 )+ABS1( UA22 ) ).LE.AVB22 /
     $               ( ABS1( VB21 )+ABS1( VB22 ) ) ) THEN
               CALL CLARTG( -CONJG( UA21 ), CONJG( UA22 ), CSQ, SNQ, R )
            ELSE
               CALL CLARTG( -CONJG( VB21 ), CONJG( VB22 ), CSQ, SNQ, R )
            END IF
*
            CSU = SNL
            SNU = D1*CSL
            CSV = SNR
            SNV = D1*CSR
*
         END IF
*
      ELSE
*
*        Input matrices A and B are lower triangular matrices
*
*        Form matrix C = A*adj(B) = ( a 0 )
*                                   ( c d )
*
         A = A1*B3
         D = A3*B1
         C = A2*B3 - A3*B2
         FC = ABS( C )
*
*        Transform complex 2-by-2 matrix C to real matrix by unitary
*        diagonal matrix diag(d1,1).
*
         D1 = ONE
         IF( FC.NE.ZERO )
     $      D1 = C / FC
*
*        The SVD of real 2 by 2 triangular C
*
*         ( CSL -SNL )*( A 0 )*(  CSR  SNR ) = ( R 0 )
*         ( SNL  CSL ) ( C D ) ( -SNR  CSR )   ( 0 T )
*
         CALL SLASV2( A, FC, D, S1, S2, SNR, CSR, SNL, CSL )
*
         IF( ABS( CSR ).GE.ABS( SNR ) .OR. ABS( CSL ).GE.ABS( SNL ) )
     $        THEN
*
*           Compute the (2,1) and (2,2) elements of U**H *A and V**H *B,
*           and (2,1) element of |U|**H *|A| and |V|**H *|B|.
*
            UA21 = -D1*SNR*A1 + CSR*A2
            UA22R = CSR*A3
*
            VB21 = -D1*SNL*B1 + CSL*B2
            VB22R = CSL*B3
*
            AUA21 = ABS( SNR )*ABS( A1 ) + ABS( CSR )*ABS1( A2 )
            AVB21 = ABS( SNL )*ABS( B1 ) + ABS( CSL )*ABS1( B2 )
*
*           zero (2,1) elements of U**H *A and V**H *B.
*
            IF( ( ABS1( UA21 )+ABS( UA22R ) ).EQ.ZERO ) THEN
               CALL CLARTG( CMPLX( VB22R ), VB21, CSQ, SNQ, R )
            ELSE IF( ( ABS1( VB21 )+ABS( VB22R ) ).EQ.ZERO ) THEN
               CALL CLARTG( CMPLX( UA22R ), UA21, CSQ, SNQ, R )
            ELSE IF( AUA21 / ( ABS1( UA21 )+ABS( UA22R ) ).LE.AVB21 /
     $               ( ABS1( VB21 )+ABS( VB22R ) ) ) THEN
               CALL CLARTG( CMPLX( UA22R ), UA21, CSQ, SNQ, R )
            ELSE
               CALL CLARTG( CMPLX( VB22R ), VB21, CSQ, SNQ, R )
            END IF
*
            CSU = CSR
            SNU = -CONJG( D1 )*SNR
            CSV = CSL
            SNV = -CONJG( D1 )*SNL
*
         ELSE
*
*           Compute the (1,1) and (1,2) elements of U**H *A and V**H *B,
*           and (1,1) element of |U|**H *|A| and |V|**H *|B|.
*
            UA11 = CSR*A1 + CONJG( D1 )*SNR*A2
            UA12 = CONJG( D1 )*SNR*A3
*
            VB11 = CSL*B1 + CONJG( D1 )*SNL*B2
            VB12 = CONJG( D1 )*SNL*B3
*
            AUA11 = ABS( CSR )*ABS( A1 ) + ABS( SNR )*ABS1( A2 )
            AVB11 = ABS( CSL )*ABS( B1 ) + ABS( SNL )*ABS1( B2 )
*
*           zero (1,1) elements of U**H *A and V**H *B, and then swap.
*
            IF( ( ABS1( UA11 )+ABS1( UA12 ) ).EQ.ZERO ) THEN
               CALL CLARTG( VB12, VB11, CSQ, SNQ, R )
            ELSE IF( ( ABS1( VB11 )+ABS1( VB12 ) ).EQ.ZERO ) THEN
               CALL CLARTG( UA12, UA11, CSQ, SNQ, R )
            ELSE IF( AUA11 / ( ABS1( UA11 )+ABS1( UA12 ) ).LE.AVB11 /
     $               ( ABS1( VB11 )+ABS1( VB12 ) ) ) THEN
               CALL CLARTG( UA12, UA11, CSQ, SNQ, R )
            ELSE
               CALL CLARTG( VB12, VB11, CSQ, SNQ, R )
            END IF
*
            CSU = SNR
            SNU = CONJG( D1 )*CSR
            CSV = SNL
            SNV = CONJG( D1 )*CSL
*
         END IF
*
      END IF
*
      RETURN
*
*     End of CLAGS2
*
      END