summaryrefslogtreecommitdiff
path: root/SRC/claed0.f
blob: 9907b10168852d74e85033a136d5f54cbb36edf5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
*> \brief \b CLAED0 used by sstedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLAED0 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claed0.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claed0.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claed0.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
*                          IWORK, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDQ, LDQS, N, QSIZ
*       ..
*       .. Array Arguments ..
*       INTEGER            IWORK( * )
*       REAL               D( * ), E( * ), RWORK( * )
*       COMPLEX            Q( LDQ, * ), QSTORE( LDQS, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> Using the divide and conquer method, CLAED0 computes all eigenvalues
*> of a symmetric tridiagonal matrix which is one diagonal block of
*> those from reducing a dense or band Hermitian matrix and
*> corresponding eigenvectors of the dense or band matrix.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] QSIZ
*> \verbatim
*>          QSIZ is INTEGER
*>         The dimension of the unitary matrix used to reduce
*>         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*>          D is REAL array, dimension (N)
*>         On entry, the diagonal elements of the tridiagonal matrix.
*>         On exit, the eigenvalues in ascending order.
*> \endverbatim
*>
*> \param[in,out] E
*> \verbatim
*>          E is REAL array, dimension (N-1)
*>         On entry, the off-diagonal elements of the tridiagonal matrix.
*>         On exit, E has been destroyed.
*> \endverbatim
*>
*> \param[in,out] Q
*> \verbatim
*>          Q is COMPLEX array, dimension (LDQ,N)
*>         On entry, Q must contain an QSIZ x N matrix whose columns
*>         unitarily orthonormal. It is a part of the unitary matrix
*>         that reduces the full dense Hermitian matrix to a
*>         (reducible) symmetric tridiagonal matrix.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*>          LDQ is INTEGER
*>         The leading dimension of the array Q.  LDQ >= max(1,N).
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array,
*>         the dimension of IWORK must be at least
*>                      6 + 6*N + 5*N*lg N
*>                      ( lg( N ) = smallest integer k
*>                                  such that 2^k >= N )
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array,
*>                               dimension (1 + 3*N + 2*N*lg N + 3*N**2)
*>                        ( lg( N ) = smallest integer k
*>                                    such that 2^k >= N )
*> \endverbatim
*>
*> \param[out] QSTORE
*> \verbatim
*>          QSTORE is COMPLEX array, dimension (LDQS, N)
*>         Used to store parts of
*>         the eigenvector matrix when the updating matrix multiplies
*>         take place.
*> \endverbatim
*>
*> \param[in] LDQS
*> \verbatim
*>          LDQS is INTEGER
*>         The leading dimension of the array QSTORE.
*>         LDQS >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*>          > 0:  The algorithm failed to compute an eigenvalue while
*>                working on the submatrix lying in rows and columns
*>                INFO/(N+1) through mod(INFO,N+1).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexOTHERcomputational
*
*  =====================================================================
      SUBROUTINE CLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
     $                   IWORK, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDQ, LDQS, N, QSIZ
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               D( * ), E( * ), RWORK( * )
      COMPLEX            Q( LDQ, * ), QSTORE( LDQS, * )
*     ..
*
*  =====================================================================
*
*  Warning:      N could be as big as QSIZ!
*
*     .. Parameters ..
      REAL               TWO
      PARAMETER          ( TWO = 2.E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            CURLVL, CURPRB, CURR, I, IGIVCL, IGIVNM,
     $                   IGIVPT, INDXQ, IPERM, IPRMPT, IQ, IQPTR, IWREM,
     $                   J, K, LGN, LL, MATSIZ, MSD2, SMLSIZ, SMM1,
     $                   SPM1, SPM2, SUBMAT, SUBPBS, TLVLS
      REAL               TEMP
*     ..
*     .. External Subroutines ..
      EXTERNAL           CCOPY, CLACRM, CLAED7, SCOPY, SSTEQR, XERBLA
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, INT, LOG, MAX, REAL
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
*     IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN
*        INFO = -1
*     ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) )
*    $        THEN
      IF( QSIZ.LT.MAX( 0, N ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDQS.LT.MAX( 1, N ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CLAED0', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      SMLSIZ = ILAENV( 9, 'CLAED0', ' ', 0, 0, 0, 0 )
*
*     Determine the size and placement of the submatrices, and save in
*     the leading elements of IWORK.
*
      IWORK( 1 ) = N
      SUBPBS = 1
      TLVLS = 0
   10 CONTINUE
      IF( IWORK( SUBPBS ).GT.SMLSIZ ) THEN
         DO 20 J = SUBPBS, 1, -1
            IWORK( 2*J ) = ( IWORK( J )+1 ) / 2
            IWORK( 2*J-1 ) = IWORK( J ) / 2
   20    CONTINUE
         TLVLS = TLVLS + 1
         SUBPBS = 2*SUBPBS
         GO TO 10
      END IF
      DO 30 J = 2, SUBPBS
         IWORK( J ) = IWORK( J ) + IWORK( J-1 )
   30 CONTINUE
*
*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
*     using rank-1 modifications (cuts).
*
      SPM1 = SUBPBS - 1
      DO 40 I = 1, SPM1
         SUBMAT = IWORK( I ) + 1
         SMM1 = SUBMAT - 1
         D( SMM1 ) = D( SMM1 ) - ABS( E( SMM1 ) )
         D( SUBMAT ) = D( SUBMAT ) - ABS( E( SMM1 ) )
   40 CONTINUE
*
      INDXQ = 4*N + 3
*
*     Set up workspaces for eigenvalues only/accumulate new vectors
*     routine
*
      TEMP = LOG( REAL( N ) ) / LOG( TWO )
      LGN = INT( TEMP )
      IF( 2**LGN.LT.N )
     $   LGN = LGN + 1
      IF( 2**LGN.LT.N )
     $   LGN = LGN + 1
      IPRMPT = INDXQ + N + 1
      IPERM = IPRMPT + N*LGN
      IQPTR = IPERM + N*LGN
      IGIVPT = IQPTR + N + 2
      IGIVCL = IGIVPT + N*LGN
*
      IGIVNM = 1
      IQ = IGIVNM + 2*N*LGN
      IWREM = IQ + N**2 + 1
*     Initialize pointers
      DO 50 I = 0, SUBPBS
         IWORK( IPRMPT+I ) = 1
         IWORK( IGIVPT+I ) = 1
   50 CONTINUE
      IWORK( IQPTR ) = 1
*
*     Solve each submatrix eigenproblem at the bottom of the divide and
*     conquer tree.
*
      CURR = 0
      DO 70 I = 0, SPM1
         IF( I.EQ.0 ) THEN
            SUBMAT = 1
            MATSIZ = IWORK( 1 )
         ELSE
            SUBMAT = IWORK( I ) + 1
            MATSIZ = IWORK( I+1 ) - IWORK( I )
         END IF
         LL = IQ - 1 + IWORK( IQPTR+CURR )
         CALL SSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
     $                RWORK( LL ), MATSIZ, RWORK, INFO )
         CALL CLACRM( QSIZ, MATSIZ, Q( 1, SUBMAT ), LDQ, RWORK( LL ),
     $                MATSIZ, QSTORE( 1, SUBMAT ), LDQS,
     $                RWORK( IWREM ) )
         IWORK( IQPTR+CURR+1 ) = IWORK( IQPTR+CURR ) + MATSIZ**2
         CURR = CURR + 1
         IF( INFO.GT.0 ) THEN
            INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
            RETURN
         END IF
         K = 1
         DO 60 J = SUBMAT, IWORK( I+1 )
            IWORK( INDXQ+J ) = K
            K = K + 1
   60    CONTINUE
   70 CONTINUE
*
*     Successively merge eigensystems of adjacent submatrices
*     into eigensystem for the corresponding larger matrix.
*
*     while ( SUBPBS > 1 )
*
      CURLVL = 1
   80 CONTINUE
      IF( SUBPBS.GT.1 ) THEN
         SPM2 = SUBPBS - 2
         DO 90 I = 0, SPM2, 2
            IF( I.EQ.0 ) THEN
               SUBMAT = 1
               MATSIZ = IWORK( 2 )
               MSD2 = IWORK( 1 )
               CURPRB = 0
            ELSE
               SUBMAT = IWORK( I ) + 1
               MATSIZ = IWORK( I+2 ) - IWORK( I )
               MSD2 = MATSIZ / 2
               CURPRB = CURPRB + 1
            END IF
*
*     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
*     into an eigensystem of size MATSIZ.  CLAED7 handles the case
*     when the eigenvectors of a full or band Hermitian matrix (which
*     was reduced to tridiagonal form) are desired.
*
*     I am free to use Q as a valuable working space until Loop 150.
*
            CALL CLAED7( MATSIZ, MSD2, QSIZ, TLVLS, CURLVL, CURPRB,
     $                   D( SUBMAT ), QSTORE( 1, SUBMAT ), LDQS,
     $                   E( SUBMAT+MSD2-1 ), IWORK( INDXQ+SUBMAT ),
     $                   RWORK( IQ ), IWORK( IQPTR ), IWORK( IPRMPT ),
     $                   IWORK( IPERM ), IWORK( IGIVPT ),
     $                   IWORK( IGIVCL ), RWORK( IGIVNM ),
     $                   Q( 1, SUBMAT ), RWORK( IWREM ),
     $                   IWORK( SUBPBS+1 ), INFO )
            IF( INFO.GT.0 ) THEN
               INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
               RETURN
            END IF
            IWORK( I / 2+1 ) = IWORK( I+2 )
   90    CONTINUE
         SUBPBS = SUBPBS / 2
         CURLVL = CURLVL + 1
         GO TO 80
      END IF
*
*     end while
*
*     Re-merge the eigenvalues/vectors which were deflated at the final
*     merge step.
*
      DO 100 I = 1, N
         J = IWORK( INDXQ+I )
         RWORK( I ) = D( J )
         CALL CCOPY( QSIZ, QSTORE( 1, J ), 1, Q( 1, I ), 1 )
  100 CONTINUE
      CALL SCOPY( N, RWORK, 1, D, 1 )
*
      RETURN
*
*     End of CLAED0
*
      END