1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
*> \brief \b CLA_LIN_BERR computes a component-wise relative backward error.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLA_LIN_BERR + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_lin_berr.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_lin_berr.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_lin_berr.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CLA_LIN_BERR ( N, NZ, NRHS, RES, AYB, BERR )
*
* .. Scalar Arguments ..
* INTEGER N, NZ, NRHS
* ..
* .. Array Arguments ..
* REAL AYB( N, NRHS ), BERR( NRHS )
* COMPLEX RES( N, NRHS )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLA_LIN_BERR computes componentwise relative backward error from
*> the formula
*> max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
*> where abs(Z) is the componentwise absolute value of the matrix
*> or vector Z.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of linear equations, i.e., the order of the
*> matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NZ
*> \verbatim
*> NZ is INTEGER
*> We add (NZ+1)*SLAMCH( 'Safe minimum' ) to R(i) in the numerator to
*> guard against spuriously zero residuals. Default value is N.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrices AYB, RES, and BERR. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] RES
*> \verbatim
*> RES is COMPLEX array, dimension (N,NRHS)
*> The residual matrix, i.e., the matrix R in the relative backward
*> error formula above.
*> \endverbatim
*>
*> \param[in] AYB
*> \verbatim
*> AYB is REAL array, dimension (N, NRHS)
*> The denominator in the relative backward error formula above, i.e.,
*> the matrix abs(op(A_s))*abs(Y) + abs(B_s). The matrices A, Y, and B
*> are from iterative refinement (see cla_gerfsx_extended.f).
*> \endverbatim
*>
*> \param[out] BERR
*> \verbatim
*> BERR is REAL array, dimension (NRHS)
*> The componentwise relative backward error from the formula above.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2016
*
*> \ingroup complexOTHERcomputational
*
* =====================================================================
SUBROUTINE CLA_LIN_BERR ( N, NZ, NRHS, RES, AYB, BERR )
*
* -- LAPACK computational routine (version 3.6.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2016
*
* .. Scalar Arguments ..
INTEGER N, NZ, NRHS
* ..
* .. Array Arguments ..
REAL AYB( N, NRHS ), BERR( NRHS )
COMPLEX RES( N, NRHS )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
REAL TMP
INTEGER I, J
COMPLEX CDUM
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, REAL, AIMAG, MAX
* ..
* .. External Functions ..
EXTERNAL SLAMCH
REAL SLAMCH
REAL SAFE1
* ..
* .. Statement Functions ..
COMPLEX CABS1
* ..
* .. Statement Function Definitions ..
CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
* ..
* .. Executable Statements ..
*
* Adding SAFE1 to the numerator guards against spuriously zero
* residuals. A similar safeguard is in the CLA_yyAMV routine used
* to compute AYB.
*
SAFE1 = SLAMCH( 'Safe minimum' )
SAFE1 = (NZ+1)*SAFE1
DO J = 1, NRHS
BERR(J) = 0.0
DO I = 1, N
IF (AYB(I,J) .NE. 0.0) THEN
TMP = (SAFE1 + CABS1(RES(I,J)))/AYB(I,J)
BERR(J) = MAX( BERR(J), TMP )
END IF
*
* If AYB is exactly 0.0 (and if computed by CLA_yyAMV), then we know
* the true residual also must be exactly 0.0.
*
END DO
END DO
END
|