summaryrefslogtreecommitdiff
path: root/SRC/cla_herpvgrw.f
blob: 04b77e7a943e0917d23382af5ff748806111ef1d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
      REAL FUNCTION CLA_HERPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF, IPIV,
     $                            WORK )
*
*     -- LAPACK routine (version 3.2)                                 --
*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
*     -- Jason Riedy of Univ. of California Berkeley.                 --
*     -- November 2008                                                --
*
*     -- LAPACK is a software package provided by Univ. of Tennessee, --
*     -- Univ. of California Berkeley and NAG Ltd.                    --
*
      IMPLICIT NONE
*     ..
*     .. Scalar Arguments ..
      CHARACTER*1        UPLO
      INTEGER            N, INFO, LDA, LDAF
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            A( LDA, * ), AF( LDAF, * )
      REAL               WORK( * )
*     ..
*
*  Purpose
*  =======
* 
*  CLA_HERPVGRW computes ... .
*
*  Arguments
*  =========
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            NCOLS, I, J, K, KP
      REAL               AMAX, UMAX, RPVGRW, TMP
      LOGICAL            UPPER, LSAME
      COMPLEX            ZDUM
*     ..
*     .. External Functions ..
      EXTERNAL           LSAME, CLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, REAL, AIMAG, MAX, MIN
*     ..
*     .. Statement Functions ..
      REAL               CABS1
*     ..
*     .. Statement Function Definitions ..
      CABS1( ZDUM ) = ABS( REAL ( ZDUM ) ) + ABS( AIMAG ( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
      UPPER = LSAME( 'Upper', UPLO )
      IF ( INFO.EQ.0 ) THEN
         IF (UPPER) THEN
            NCOLS = 1
         ELSE
            NCOLS = N
         END IF
      ELSE
         NCOLS = INFO
      END IF

      RPVGRW = 1.0
      DO I = 1, 2*N
         WORK( I ) = 0.0
      END DO
*
*     Find the max magnitude entry of each column of A.  Compute the max
*     for all N columns so we can apply the pivot permutation while
*     looping below.  Assume a full factorization is the common case.
*
      IF ( UPPER ) THEN
         DO J = 1, N
            DO I = 1, J
               WORK( N+I ) = MAX( CABS1( A( I,J ) ), WORK( N+I ) )
               WORK( N+J ) = MAX( CABS1( A( I,J ) ), WORK( N+J ) )
            END DO
         END DO
      ELSE
         DO J = 1, N
            DO I = J, N
               WORK( N+I ) = MAX( CABS1( A( I, J ) ), WORK( N+I ) )
               WORK( N+J ) = MAX( CABS1( A( I, J ) ), WORK( N+J ) )
            END DO
         END DO
      END IF
*
*     Now find the max magnitude entry of each column of U or L.  Also
*     permute the magnitudes of A above so they're in the same order as
*     the factor.
*
*     The iteration orders and permutations were copied from csytrs.
*     Calls to SSWAP would be severe overkill.
*
      IF ( UPPER ) THEN
         K = N
         DO WHILE ( K .LT. NCOLS .AND. K.GT.0 )
            IF ( IPIV( K ).GT.0 ) THEN
!              1x1 pivot
               KP = IPIV( K )
               IF ( KP .NE. K ) THEN
                  TMP = WORK( N+K )
                  WORK( N+K ) = WORK( N+KP )
                  WORK( N+KP ) = TMP
               END IF
               DO I = 1, K
                  WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
               END DO
               K = K - 1
            ELSE
!              2x2 pivot
               KP = -IPIV( K )
               TMP = WORK( N+K-1 )
               WORK( N+K-1 ) = WORK( N+KP )
               WORK( N+KP ) = TMP
               DO I = 1, K-1
                  WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
                  WORK( K-1 ) =
     $                 MAX( CABS1( AF( I, K-1 ) ), WORK( K-1 ) )
               END DO
               WORK( K ) = MAX( CABS1( AF( K, K ) ), WORK( K ) )
               K = K - 2
            END IF
         END DO
         K = NCOLS
         DO WHILE ( K .LE. N )
            IF ( IPIV( K ).GT.0 ) THEN
               KP = IPIV( K )
               IF ( KP .NE. K ) THEN
                  TMP = WORK( N+K )
                  WORK( N+K ) = WORK( N+KP )
                  WORK( N+KP ) = TMP
               END IF
               K = K + 1
            ELSE
               KP = -IPIV( K )
               TMP = WORK( N+K )
               WORK( N+K ) = WORK( N+KP )
               WORK( N+KP ) = TMP
               K = K + 2
            END IF
         END DO
      ELSE
         K = 1
         DO WHILE ( K .LE. NCOLS )
            IF ( IPIV( K ).GT.0 ) THEN
!              1x1 pivot
               KP = IPIV( K )
               IF ( KP .NE. K ) THEN
                  TMP = WORK( N+K )
                  WORK( N+K ) = WORK( N+KP )
                  WORK( N+KP ) = TMP
               END IF
               DO I = K, N
                  WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
               END DO
               K = K + 1
            ELSE
!              2x2 pivot
               KP = -IPIV( K )
               TMP = WORK( N+K+1 )
               WORK( N+K+1 ) = WORK( N+KP )
               WORK( N+KP ) = TMP
               DO I = K+1, N
                  WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
                  WORK( K+1 ) =
     $                 MAX( CABS1( AF( I, K+1 ) ) , WORK( K+1 ) )
               END DO
               WORK(K) = MAX( CABS1( AF( K, K ) ), WORK( K ) )
               K = K + 2
            END IF
         END DO
         K = NCOLS
         DO WHILE ( K .GE. 1 )
            IF ( IPIV( K ).GT.0 ) THEN
               KP = IPIV( K )
               IF ( KP .NE. K ) THEN
                  TMP = WORK( N+K )
                  WORK( N+K ) = WORK( N+KP )
                  WORK( N+KP ) = TMP
               END IF
               K = K - 1
            ELSE
               KP = -IPIV( K )
               TMP = WORK( N+K )
               WORK( N+K ) = WORK( N+KP )
               WORK( N+KP ) = TMP
               K = K - 2
            ENDIF
         END DO
      END IF
*
*     Compute the *inverse* of the max element growth factor.  Dividing
*     by zero would imply the largest entry of the factor's column is
*     zero.  Than can happen when either the column of A is zero or
*     massive pivots made the factor underflow to zero.  Neither counts
*     as growth in itself, so simply ignore terms with zero
*     denominators.
*
      IF ( UPPER ) THEN
         DO I = NCOLS, N
            UMAX = WORK( I )
            AMAX = WORK( N+I )
            IF ( UMAX /= 0.0 ) THEN
               RPVGRW = MIN( AMAX / UMAX, RPVGRW )
            END IF
         END DO
      ELSE
         DO I = 1, NCOLS
            UMAX = WORK( I )
            AMAX = WORK( N+I )
            IF ( UMAX /= 0.0 ) THEN
               RPVGRW = MIN( AMAX / UMAX, RPVGRW )
            END IF
         END DO
      END IF

      CLA_HERPVGRW = RPVGRW
      END FUNCTION