summaryrefslogtreecommitdiff
path: root/SRC/chpgvx.f
blob: 1f01775ecf4e22b66045f5f3628906f6e1c286b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
      SUBROUTINE CHPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
     $                   IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
     $                   IWORK, IFAIL, INFO )
*
*  -- LAPACK driver routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, RANGE, UPLO
      INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
      REAL               ABSTOL, VL, VU
*     ..
*     .. Array Arguments ..
      INTEGER            IFAIL( * ), IWORK( * )
      REAL               RWORK( * ), W( * )
      COMPLEX            AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  CHPGVX computes selected eigenvalues and, optionally, eigenvectors
*  of a complex generalized Hermitian-definite eigenproblem, of the form
*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
*  B are assumed to be Hermitian, stored in packed format, and B is also
*  positive definite.  Eigenvalues and eigenvectors can be selected by
*  specifying either a range of values or a range of indices for the
*  desired eigenvalues.
*
*  Arguments
*  =========
*
*  ITYPE   (input) INTEGER
*          Specifies the problem type to be solved:
*          = 1:  A*x = (lambda)*B*x
*          = 2:  A*B*x = (lambda)*x
*          = 3:  B*A*x = (lambda)*x
*
*  JOBZ    (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only;
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  RANGE   (input) CHARACTER*1
*          = 'A': all eigenvalues will be found;
*          = 'V': all eigenvalues in the half-open interval (VL,VU]
*                 will be found;
*          = 'I': the IL-th through IU-th eigenvalues will be found.
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangles of A and B are stored;
*          = 'L':  Lower triangles of A and B are stored.
*
*  N       (input) INTEGER
*          The order of the matrices A and B.  N >= 0.
*
*  AP      (input/output) COMPLEX array, dimension (N*(N+1)/2)
*          On entry, the upper or lower triangle of the Hermitian matrix
*          A, packed columnwise in a linear array.  The j-th column of A
*          is stored in the array AP as follows:
*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
*
*          On exit, the contents of AP are destroyed.
*
*  BP      (input/output) COMPLEX array, dimension (N*(N+1)/2)
*          On entry, the upper or lower triangle of the Hermitian matrix
*          B, packed columnwise in a linear array.  The j-th column of B
*          is stored in the array BP as follows:
*          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
*          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
*
*          On exit, the triangular factor U or L from the Cholesky
*          factorization B = U**H*U or B = L*L**H, in the same storage
*          format as B.
*
*  VL      (input) REAL
*  VU      (input) REAL
*          If RANGE='V', the lower and upper bounds of the interval to
*          be searched for eigenvalues. VL < VU.
*          Not referenced if RANGE = 'A' or 'I'.
*
*  IL      (input) INTEGER
*  IU      (input) INTEGER
*          If RANGE='I', the indices (in ascending order) of the
*          smallest and largest eigenvalues to be returned.
*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
*          Not referenced if RANGE = 'A' or 'V'.
*
*  ABSTOL  (input) REAL
*          The absolute error tolerance for the eigenvalues.
*          An approximate eigenvalue is accepted as converged
*          when it is determined to lie in an interval [a,b]
*          of width less than or equal to
*
*                  ABSTOL + EPS *   max( |a|,|b| ) ,
*
*          where EPS is the machine precision.  If ABSTOL is less than
*          or equal to zero, then  EPS*|T|  will be used in its place,
*          where |T| is the 1-norm of the tridiagonal matrix obtained
*          by reducing AP to tridiagonal form.
*
*          Eigenvalues will be computed most accurately when ABSTOL is
*          set to twice the underflow threshold 2*SLAMCH('S'), not zero.
*          If this routine returns with INFO>0, indicating that some
*          eigenvectors did not converge, try setting ABSTOL to
*          2*SLAMCH('S').
*
*  M       (output) INTEGER
*          The total number of eigenvalues found.  0 <= M <= N.
*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*
*  W       (output) REAL array, dimension (N)
*          On normal exit, the first M elements contain the selected
*          eigenvalues in ascending order.
*
*  Z       (output) COMPLEX array, dimension (LDZ, N)
*          If JOBZ = 'N', then Z is not referenced.
*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
*          contain the orthonormal eigenvectors of the matrix A
*          corresponding to the selected eigenvalues, with the i-th
*          column of Z holding the eigenvector associated with W(i).
*          The eigenvectors are normalized as follows:
*          if ITYPE = 1 or 2, Z**H*B*Z = I;
*          if ITYPE = 3, Z**H*inv(B)*Z = I.
*
*          If an eigenvector fails to converge, then that column of Z
*          contains the latest approximation to the eigenvector, and the
*          index of the eigenvector is returned in IFAIL.
*          Note: the user must ensure that at least max(1,M) columns are
*          supplied in the array Z; if RANGE = 'V', the exact value of M
*          is not known in advance and an upper bound must be used.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1, and if
*          JOBZ = 'V', LDZ >= max(1,N).
*
*  WORK    (workspace) COMPLEX array, dimension (2*N)
*
*  RWORK   (workspace) REAL array, dimension (7*N)
*
*  IWORK   (workspace) INTEGER array, dimension (5*N)
*
*  IFAIL   (output) INTEGER array, dimension (N)
*          If JOBZ = 'V', then if INFO = 0, the first M elements of
*          IFAIL are zero.  If INFO > 0, then IFAIL contains the
*          indices of the eigenvectors that failed to converge.
*          If JOBZ = 'N', then IFAIL is not referenced.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  CPPTRF or CHPEVX returned an error code:
*             <= N:  if INFO = i, CHPEVX failed to converge;
*                    i eigenvectors failed to converge.  Their indices
*                    are stored in array IFAIL.
*             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
*                    minor of order i of B is not positive definite.
*                    The factorization of B could not be completed and
*                    no eigenvalues or eigenvectors were computed.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
      CHARACTER          TRANS
      INTEGER            J
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CHPEVX, CHPGST, CPPTRF, CTPMV, CTPSV, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      WANTZ = LSAME( JOBZ, 'V' )
      UPPER = LSAME( UPLO, 'U' )
      ALLEIG = LSAME( RANGE, 'A' )
      VALEIG = LSAME( RANGE, 'V' )
      INDEIG = LSAME( RANGE, 'I' )
*
      INFO = 0
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
         INFO = -1
      ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
         INFO = -3
      ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE 
         IF( VALEIG ) THEN
            IF( N.GT.0 .AND. VU.LE.VL ) THEN
               INFO = -9
            END IF
         ELSE IF( INDEIG ) THEN
            IF( IL.LT.1 ) THEN
               INFO = -10
            ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
               INFO = -11
            END IF
         END IF
      END IF
      IF( INFO.EQ.0 ) THEN
         IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
            INFO = -16
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CHPGVX', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Form a Cholesky factorization of B.
*
      CALL CPPTRF( UPLO, N, BP, INFO )
      IF( INFO.NE.0 ) THEN
         INFO = N + INFO
         RETURN
      END IF
*
*     Transform problem to standard eigenvalue problem and solve.
*
      CALL CHPGST( ITYPE, UPLO, N, AP, BP, INFO )
      CALL CHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M,
     $             W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
*
      IF( WANTZ ) THEN
*
*        Backtransform eigenvectors to the original problem.
*
         IF( INFO.GT.0 )
     $      M = INFO - 1
         IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
*
*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
*
            IF( UPPER ) THEN
               TRANS = 'N'
            ELSE
               TRANS = 'C'
            END IF
*
            DO 10 J = 1, M
               CALL CTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
     $                     1 )
   10       CONTINUE
*
         ELSE IF( ITYPE.EQ.3 ) THEN
*
*           For B*A*x=(lambda)*x;
*           backtransform eigenvectors: x = L*y or U'*y
*
            IF( UPPER ) THEN
               TRANS = 'C'
            ELSE
               TRANS = 'N'
            END IF
*
            DO 20 J = 1, M
               CALL CTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
     $                     1 )
   20       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of CHPGVX
*
      END