1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
SUBROUTINE CHETRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
$ WORK, INFO )
*
* -- LAPACK PROTOTYPE routine (version 3.3.0) --
*
* -- Written by Julie Langou of the Univ. of TN --
* November 2010
*
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, LDB, N, NRHS
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* CHETRS2 solves a system of linear equations A*X = B with a COMPLEX
* Hermitian matrix A using the factorization A = U*D*U**T or
* A = L*D*L**T computed by CSYTRF and converted by CSYCONV.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* Specifies whether the details of the factorization are stored
* as an upper or lower triangular matrix.
* = 'U': Upper triangular, form is A = U*D*U**H;
* = 'L': Lower triangular, form is A = L*D*L**H.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrix B. NRHS >= 0.
*
* A (input) COMPLEX array, dimension (LDA,N)
* The block diagonal matrix D and the multipliers used to
* obtain the factor U or L as computed by CHETRF.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* IPIV (input) INTEGER array, dimension (N)
* Details of the interchanges and the block structure of D
* as determined by CHETRF.
*
* B (input/output) COMPLEX array, dimension (LDB,NRHS)
* On entry, the right hand side matrix B.
* On exit, the solution matrix X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* WORK (workspace) COMPLEX array, dimension (N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE
PARAMETER ( ONE = (1.0E+0,0.0E+0) )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I, IINFO, J, K, KP
REAL S
COMPLEX AK, AKM1, AKM1K, BK, BKM1, DENOM
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CSCAL, CSYCONV, CSWAP, CTRSM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG, MAX, REAL
* ..
* .. Executable Statements ..
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CHETRS2', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 )
$ RETURN
*
* Convert A
*
CALL CSYCONV( UPLO, 'C', N, A, LDA, IPIV, WORK, IINFO )
*
IF( UPPER ) THEN
*
* Solve A*X = B, where A = U*D*U'.
*
* P' * B
K=N
DO WHILE ( K .GE. 1 )
IF( IPIV( K ).GT.0 ) THEN
* 1 x 1 diagonal block
* Interchange rows K and IPIV(K).
KP = IPIV( K )
IF( KP.NE.K )
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
K=K-1
ELSE
* 2 x 2 diagonal block
* Interchange rows K-1 and -IPIV(K).
KP = -IPIV( K )
IF( KP.EQ.-IPIV( K-1 ) )
$ CALL CSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
K=K-2
END IF
END DO
*
* Compute (U \P' * B) -> B [ (U \P' * B) ]
*
CALL CTRSM('L','U','N','U',N,NRHS,ONE,A,LDA,B,LDB)
*
* Compute D \ B -> B [ D \ (U \P' * B) ]
*
I=N
DO WHILE ( I .GE. 1 )
IF( IPIV(I) .GT. 0 ) THEN
S = REAL( ONE ) / REAL( A( I, I ) )
CALL CSSCAL( NRHS, S, B( I, 1 ), LDB )
ELSEIF ( I .GT. 1) THEN
IF ( IPIV(I-1) .EQ. IPIV(I) ) THEN
AKM1K = WORK(I)
AKM1 = A( I-1, I-1 ) / AKM1K
AK = A( I, I ) / CONJG( AKM1K )
DENOM = AKM1*AK - ONE
DO 15 J = 1, NRHS
BKM1 = B( I-1, J ) / AKM1K
BK = B( I, J ) / CONJG( AKM1K )
B( I-1, J ) = ( AK*BKM1-BK ) / DENOM
B( I, J ) = ( AKM1*BK-BKM1 ) / DENOM
15 CONTINUE
I = I - 1
ENDIF
ENDIF
I = I - 1
END DO
*
* Compute (U' \ B) -> B [ U' \ (D \ (U \P' * B) ) ]
*
CALL CTRSM('L','U','C','U',N,NRHS,ONE,A,LDA,B,LDB)
*
* P * B [ P * (U' \ (D \ (U \P' * B) )) ]
*
K=1
DO WHILE ( K .LE. N )
IF( IPIV( K ).GT.0 ) THEN
* 1 x 1 diagonal block
* Interchange rows K and IPIV(K).
KP = IPIV( K )
IF( KP.NE.K )
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
K=K+1
ELSE
* 2 x 2 diagonal block
* Interchange rows K-1 and -IPIV(K).
KP = -IPIV( K )
IF( K .LT. N .AND. KP.EQ.-IPIV( K+1 ) )
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
K=K+2
ENDIF
END DO
*
ELSE
*
* Solve A*X = B, where A = L*D*L'.
*
* P' * B
K=1
DO WHILE ( K .LE. N )
IF( IPIV( K ).GT.0 ) THEN
* 1 x 1 diagonal block
* Interchange rows K and IPIV(K).
KP = IPIV( K )
IF( KP.NE.K )
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
K=K+1
ELSE
* 2 x 2 diagonal block
* Interchange rows K and -IPIV(K+1).
KP = -IPIV( K+1 )
IF( KP.EQ.-IPIV( K ) )
$ CALL CSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
K=K+2
ENDIF
END DO
*
* Compute (L \P' * B) -> B [ (L \P' * B) ]
*
CALL CTRSM('L','L','N','U',N,NRHS,ONE,A,LDA,B,LDB)
*
* Compute D \ B -> B [ D \ (L \P' * B) ]
*
I=1
DO WHILE ( I .LE. N )
IF( IPIV(I) .GT. 0 ) THEN
S = REAL( ONE ) / REAL( A( I, I ) )
CALL CSSCAL( NRHS, S, B( I, 1 ), LDB )
ELSE
AKM1K = WORK(I)
AKM1 = A( I, I ) / CONJG( AKM1K )
AK = A( I+1, I+1 ) / AKM1K
DENOM = AKM1*AK - ONE
DO 25 J = 1, NRHS
BKM1 = B( I, J ) / CONJG( AKM1K )
BK = B( I+1, J ) / AKM1K
B( I, J ) = ( AK*BKM1-BK ) / DENOM
B( I+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
25 CONTINUE
I = I + 1
ENDIF
I = I + 1
END DO
*
* Compute (L' \ B) -> B [ L' \ (D \ (L \P' * B) ) ]
*
CALL CTRSM('L','L','C','U',N,NRHS,ONE,A,LDA,B,LDB)
*
* P * B [ P * (L' \ (D \ (L \P' * B) )) ]
*
K=N
DO WHILE ( K .GE. 1 )
IF( IPIV( K ).GT.0 ) THEN
* 1 x 1 diagonal block
* Interchange rows K and IPIV(K).
KP = IPIV( K )
IF( KP.NE.K )
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
K=K-1
ELSE
* 2 x 2 diagonal block
* Interchange rows K-1 and -IPIV(K).
KP = -IPIV( K )
IF( K.GT.1 .AND. KP.EQ.-IPIV( K-1 ) )
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
K=K-2
ENDIF
END DO
*
END IF
*
* Revert A
*
CALL CSYCONV( UPLO, 'R', N, A, LDA, IPIV, WORK, IINFO )
*
RETURN
*
* End of CHETRS2
*
END
|