summaryrefslogtreecommitdiff
path: root/SRC/chetri2x.f
blob: 68163fc4b6ef020165c168409dbcf3637b673b6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
*> \brief \b CHETRI2X
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download CHETRI2X + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetri2x.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetri2x.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetri2x.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CHETRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, LDA, N, NB
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       COMPLEX            A( LDA, * ), WORK( N+NB+1,* )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CHETRI2X computes the inverse of a complex Hermitian indefinite matrix
*> A using the factorization A = U*D*U**H or A = L*D*L**H computed by
*> CHETRF.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the details of the factorization are stored
*>          as an upper or lower triangular matrix.
*>          = 'U':  Upper triangular, form is A = U*D*U**H;
*>          = 'L':  Lower triangular, form is A = L*D*L**H.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          On entry, the NNB diagonal matrix D and the multipliers
*>          used to obtain the factor U or L as computed by CHETRF.
*>
*>          On exit, if INFO = 0, the (symmetric) inverse of the original
*>          matrix.  If UPLO = 'U', the upper triangular part of the
*>          inverse is formed and the part of A below the diagonal is not
*>          referenced; if UPLO = 'L' the lower triangular part of the
*>          inverse is formed and the part of A above the diagonal is
*>          not referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          Details of the interchanges and the NNB structure of D
*>          as determined by CHETRF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (N+NB+1,NB+3)
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*>          NB is INTEGER
*>          Block size
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -i, the i-th argument had an illegal value
*>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
*>               inverse could not be computed.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2015
*
*> \ingroup complexHEcomputational
*
*  =====================================================================
      SUBROUTINE CHETRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO )
*
*  -- LAPACK computational routine (version 3.6.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2015
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, N, NB
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            A( LDA, * ), WORK( N+NB+1,* )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      COMPLEX            CONE, ZERO
      PARAMETER          ( ONE = 1.0E+0,
     $                   CONE = ( 1.0E+0, 0.0E+0 ),
     $                   ZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, IINFO, IP, K, CUT, NNB
      INTEGER            COUNT
      INTEGER            J, U11, INVD

      COMPLEX   AK, AKKP1, AKP1, D, T
      COMPLEX   U01_I_J, U01_IP1_J
      COMPLEX   U11_I_J, U11_IP1_J
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CSYCONV, XERBLA, CTRTRI
      EXTERNAL           CGEMM, CTRMM, CHESWAPR
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      END IF
*
*     Quick return if possible
*
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CHETRI2X', -INFO )
         RETURN
      END IF
      IF( N.EQ.0 )
     $   RETURN
*
*     Convert A
*     Workspace got Non-diag elements of D
*
      CALL CSYCONV( UPLO, 'C', N, A, LDA, IPIV, WORK, IINFO )
*
*     Check that the diagonal matrix D is nonsingular.
*
      IF( UPPER ) THEN
*
*        Upper triangular storage: examine D from bottom to top
*
         DO INFO = N, 1, -1
            IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
     $         RETURN
         END DO
      ELSE
*
*        Lower triangular storage: examine D from top to bottom.
*
         DO INFO = 1, N
            IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
     $         RETURN
         END DO
      END IF
      INFO = 0
*
*  Splitting Workspace
*     U01 is a block (N,NB+1) 
*     The first element of U01 is in WORK(1,1)
*     U11 is a block (NB+1,NB+1)
*     The first element of U11 is in WORK(N+1,1)
      U11 = N
*     INVD is a block (N,2)
*     The first element of INVD is in WORK(1,INVD)
      INVD = NB+2

      IF( UPPER ) THEN
*
*        invA = P * inv(U**H)*inv(D)*inv(U)*P**H.
*
        CALL CTRTRI( UPLO, 'U', N, A, LDA, INFO )
*
*       inv(D) and inv(D)*inv(U)
* 
        K=1
        DO WHILE ( K .LE. N )
         IF( IPIV( K ).GT.0 ) THEN
*           1 x 1 diagonal NNB
             WORK(K,INVD) = ONE / REAL ( A( K, K ) )
             WORK(K,INVD+1) = 0
            K=K+1
         ELSE
*           2 x 2 diagonal NNB
             T = ABS ( WORK(K+1,1) )
             AK = REAL ( A( K, K ) ) / T
             AKP1 = REAL ( A( K+1, K+1 ) ) / T
             AKKP1 = WORK(K+1,1)  / T
             D = T*( AK*AKP1-ONE )
             WORK(K,INVD) = AKP1 / D
             WORK(K+1,INVD+1) = AK / D
             WORK(K,INVD+1) = -AKKP1 / D  
             WORK(K+1,INVD) = CONJG (WORK(K,INVD+1) )
            K=K+2
         END IF
        END DO
*
*       inv(U**H) = (inv(U))**H
*
*       inv(U**H)*inv(D)*inv(U)
*
        CUT=N
        DO WHILE (CUT .GT. 0)
           NNB=NB
           IF (CUT .LE. NNB) THEN
              NNB=CUT
           ELSE
              COUNT = 0
*             count negative elements, 
              DO I=CUT+1-NNB,CUT
                  IF (IPIV(I) .LT. 0) COUNT=COUNT+1
              END DO
*             need a even number for a clear cut
              IF (MOD(COUNT,2) .EQ. 1) NNB=NNB+1
           END IF

           CUT=CUT-NNB
*
*          U01 Block 
*
           DO I=1,CUT
             DO J=1,NNB
              WORK(I,J)=A(I,CUT+J)
             END DO
           END DO
*
*          U11 Block
*
           DO I=1,NNB
             WORK(U11+I,I)=CONE
             DO J=1,I-1
                WORK(U11+I,J)=ZERO
             END DO
             DO J=I+1,NNB
                WORK(U11+I,J)=A(CUT+I,CUT+J)
             END DO
           END DO
*
*          invD*U01
*
           I=1
           DO WHILE (I .LE. CUT)
             IF (IPIV(I) > 0) THEN
                DO J=1,NNB
                    WORK(I,J)=WORK(I,INVD)*WORK(I,J)
                END DO
                I=I+1
             ELSE
                DO J=1,NNB
                   U01_I_J = WORK(I,J)
                   U01_IP1_J = WORK(I+1,J)
                   WORK(I,J)=WORK(I,INVD)*U01_I_J+
     $                      WORK(I,INVD+1)*U01_IP1_J
                   WORK(I+1,J)=WORK(I+1,INVD)*U01_I_J+
     $                      WORK(I+1,INVD+1)*U01_IP1_J
                END DO
                I=I+2
             END IF
           END DO
*
*        invD1*U11
*
           I=1
           DO WHILE (I .LE. NNB)
             IF (IPIV(CUT+I) > 0) THEN
                DO J=I,NNB
                    WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J)
                END DO
                I=I+1
             ELSE
                DO J=I,NNB
                   U11_I_J = WORK(U11+I,J)
                   U11_IP1_J = WORK(U11+I+1,J)
                WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) +
     $                      WORK(CUT+I,INVD+1)*WORK(U11+I+1,J)
                WORK(U11+I+1,J)=WORK(CUT+I+1,INVD)*U11_I_J+
     $                      WORK(CUT+I+1,INVD+1)*U11_IP1_J
                END DO
                I=I+2
             END IF
           END DO
*    
*       U11**H*invD1*U11->U11
*
        CALL CTRMM('L','U','C','U',NNB, NNB,
     $             CONE,A(CUT+1,CUT+1),LDA,WORK(U11+1,1),N+NB+1)
*
         DO I=1,NNB
            DO J=I,NNB
              A(CUT+I,CUT+J)=WORK(U11+I,J)
            END DO
         END DO
*
*          U01**H*invD*U01->A(CUT+I,CUT+J)
*
         CALL CGEMM('C','N',NNB,NNB,CUT,CONE,A(1,CUT+1),LDA,
     $              WORK,N+NB+1, ZERO, WORK(U11+1,1), N+NB+1)
*
*        U11 =  U11**H*invD1*U11 + U01**H*invD*U01
*
         DO I=1,NNB
            DO J=I,NNB
              A(CUT+I,CUT+J)=A(CUT+I,CUT+J)+WORK(U11+I,J)
            END DO
         END DO
*
*        U01 =  U00**H*invD0*U01
*
         CALL CTRMM('L',UPLO,'C','U',CUT, NNB,
     $             CONE,A,LDA,WORK,N+NB+1)

*
*        Update U01
*
         DO I=1,CUT
           DO J=1,NNB
            A(I,CUT+J)=WORK(I,J)
           END DO
         END DO
*
*      Next Block
*
       END DO
*
*        Apply PERMUTATIONS P and P**H: P * inv(U**H)*inv(D)*inv(U) *P**H
*  
            I=1
            DO WHILE ( I .LE. N )
               IF( IPIV(I) .GT. 0 ) THEN
                  IP=IPIV(I)
                 IF (I .LT. IP) CALL CHESWAPR( UPLO, N, A, LDA, I ,IP )
                 IF (I .GT. IP) CALL CHESWAPR( UPLO, N, A, LDA, IP ,I )
               ELSE
                 IP=-IPIV(I)
                 I=I+1
                 IF ( (I-1) .LT. IP) 
     $                  CALL CHESWAPR( UPLO, N, A, LDA, I-1 ,IP )
                 IF ( (I-1) .GT. IP) 
     $                  CALL CHESWAPR( UPLO, N, A, LDA, IP ,I-1 )
              ENDIF
               I=I+1
            END DO
      ELSE
*
*        LOWER...
*
*        invA = P * inv(U**H)*inv(D)*inv(U)*P**H.
*
         CALL CTRTRI( UPLO, 'U', N, A, LDA, INFO )
*
*       inv(D) and inv(D)*inv(U)
* 
        K=N
        DO WHILE ( K .GE. 1 )
         IF( IPIV( K ).GT.0 ) THEN
*           1 x 1 diagonal NNB
             WORK(K,INVD) = ONE / REAL ( A( K, K ) )
             WORK(K,INVD+1) = 0
            K=K-1
         ELSE
*           2 x 2 diagonal NNB
             T = ABS ( WORK(K-1,1) )
             AK = REAL ( A( K-1, K-1 ) ) / T
             AKP1 = REAL ( A( K, K ) ) / T
             AKKP1 = WORK(K-1,1) / T
             D = T*( AK*AKP1-ONE )
             WORK(K-1,INVD) = AKP1 / D
             WORK(K,INVD) = AK / D
             WORK(K,INVD+1) = -AKKP1 / D  
             WORK(K-1,INVD+1) = CONJG (WORK(K,INVD+1) )
            K=K-2
         END IF
        END DO
*
*       inv(U**H) = (inv(U))**H
*
*       inv(U**H)*inv(D)*inv(U)
*
        CUT=0
        DO WHILE (CUT .LT. N)
           NNB=NB
           IF (CUT + NNB .GE. N) THEN
              NNB=N-CUT
           ELSE
              COUNT = 0
*             count negative elements, 
              DO I=CUT+1,CUT+NNB
                  IF (IPIV(I) .LT. 0) COUNT=COUNT+1
              END DO
*             need a even number for a clear cut
              IF (MOD(COUNT,2) .EQ. 1) NNB=NNB+1
           END IF
*      L21 Block
           DO I=1,N-CUT-NNB
             DO J=1,NNB
              WORK(I,J)=A(CUT+NNB+I,CUT+J)
             END DO
           END DO
*     L11 Block
           DO I=1,NNB
             WORK(U11+I,I)=CONE
             DO J=I+1,NNB
                WORK(U11+I,J)=ZERO
             END DO
             DO J=1,I-1
                WORK(U11+I,J)=A(CUT+I,CUT+J)
             END DO
           END DO
*
*          invD*L21
*
           I=N-CUT-NNB
           DO WHILE (I .GE. 1)
             IF (IPIV(CUT+NNB+I) > 0) THEN
                DO J=1,NNB
                    WORK(I,J)=WORK(CUT+NNB+I,INVD)*WORK(I,J)
                END DO
                I=I-1
             ELSE
                DO J=1,NNB
                   U01_I_J = WORK(I,J)
                   U01_IP1_J = WORK(I-1,J)
                   WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
     $                        WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
                   WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
     $                        WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
                END DO
                I=I-2
             END IF
           END DO
*
*        invD1*L11
*
           I=NNB
           DO WHILE (I .GE. 1)
             IF (IPIV(CUT+I) > 0) THEN
                DO J=1,NNB
                    WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J)
                END DO
                I=I-1
             ELSE
                DO J=1,NNB
                   U11_I_J = WORK(U11+I,J)
                   U11_IP1_J = WORK(U11+I-1,J)
                WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) +
     $                      WORK(CUT+I,INVD+1)*U11_IP1_J
                WORK(U11+I-1,J)=WORK(CUT+I-1,INVD+1)*U11_I_J+
     $                      WORK(CUT+I-1,INVD)*U11_IP1_J
                END DO
                I=I-2
             END IF
           END DO
*    
*       L11**H*invD1*L11->L11
*
        CALL CTRMM('L',UPLO,'C','U',NNB, NNB,
     $             CONE,A(CUT+1,CUT+1),LDA,WORK(U11+1,1),N+NB+1)
*
         DO I=1,NNB
            DO J=1,I
              A(CUT+I,CUT+J)=WORK(U11+I,J)
            END DO
         END DO
*
        IF ( (CUT+NNB) .LT. N ) THEN
*
*          L21**H*invD2*L21->A(CUT+I,CUT+J)
*
         CALL CGEMM('C','N',NNB,NNB,N-NNB-CUT,CONE,A(CUT+NNB+1,CUT+1)
     $             ,LDA,WORK,N+NB+1, ZERO, WORK(U11+1,1), N+NB+1)
       
*
*        L11 =  L11**H*invD1*L11 + U01**H*invD*U01
*
         DO I=1,NNB
            DO J=1,I
              A(CUT+I,CUT+J)=A(CUT+I,CUT+J)+WORK(U11+I,J)
            END DO
         END DO
*
*        L01 =  L22**H*invD2*L21
*
         CALL CTRMM('L',UPLO,'C','U', N-NNB-CUT, NNB,
     $             CONE,A(CUT+NNB+1,CUT+NNB+1),LDA,WORK,N+NB+1)

*      Update L21
         DO I=1,N-CUT-NNB
           DO J=1,NNB
              A(CUT+NNB+I,CUT+J)=WORK(I,J)
           END DO
         END DO
       ELSE
*
*        L11 =  L11**H*invD1*L11
*
         DO I=1,NNB
            DO J=1,I
              A(CUT+I,CUT+J)=WORK(U11+I,J)
            END DO
         END DO
       END IF
*
*      Next Block
*
           CUT=CUT+NNB
       END DO
*
*        Apply PERMUTATIONS P and P**H: P * inv(U**H)*inv(D)*inv(U) *P**H
* 
            I=N
            DO WHILE ( I .GE. 1 )
               IF( IPIV(I) .GT. 0 ) THEN
                  IP=IPIV(I)
                 IF (I .LT. IP) CALL CHESWAPR( UPLO, N, A, LDA, I ,IP  )
                 IF (I .GT. IP) CALL CHESWAPR( UPLO, N, A, LDA, IP ,I )
               ELSE
                 IP=-IPIV(I)
                 IF ( I .LT. IP) CALL CHESWAPR( UPLO, N, A, LDA, I ,IP )
                 IF ( I .GT. IP) CALL CHESWAPR( UPLO, N, A, LDA, IP ,I )
                 I=I-1
               ENDIF
               I=I-1
            END DO
      END IF
*
      RETURN
*
*     End of CHETRI2X
*
      END