1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
SUBROUTINE CHETRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
*
* -- LAPACK routine (version 3.3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* -- April 2011 --
*
* -- Written by Julie Langou of the Univ. of TN --
*
* @generated c
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX A( LDA, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* CHETRI2 computes the inverse of a COMPLEX hermitian indefinite matrix
* A using the factorization A = U*D*U**T or A = L*D*L**T computed by
* CHETRF. CHETRI2 set the LEADING DIMENSION of the workspace
* before calling CHETRI2X that actually computes the inverse.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* Specifies whether the details of the factorization are stored
* as an upper or lower triangular matrix.
* = 'U': Upper triangular, form is A = U*D*U**T;
* = 'L': Lower triangular, form is A = L*D*L**T.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) COMPLEX array, dimension (LDA,N)
* On entry, the NB diagonal matrix D and the multipliers
* used to obtain the factor U or L as computed by CHETRF.
*
* On exit, if INFO = 0, the (symmetric) inverse of the original
* matrix. If UPLO = 'U', the upper triangular part of the
* inverse is formed and the part of A below the diagonal is not
* referenced; if UPLO = 'L' the lower triangular part of the
* inverse is formed and the part of A above the diagonal is
* not referenced.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* IPIV (input) INTEGER array, dimension (N)
* Details of the interchanges and the NB structure of D
* as determined by CHETRF.
*
* WORK (workspace) COMPLEX array, dimension (N+NB+1)*(NB+3)
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
* WORK is size >= (N+NB+1)*(NB+3)
* If LDWORK = -1, then a workspace query is assumed; the routine
* calculates:
* - the optimal size of the WORK array, returns
* this value as the first entry of the WORK array,
* - and no error message related to LDWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
* inverse could not be computed.
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL UPPER, LQUERY
INTEGER MINSIZE, NBMAX
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL LSAME, ILAENV
* ..
* .. External Subroutines ..
EXTERNAL CHETRI2X
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
LQUERY = ( LWORK.EQ.-1 )
* Get blocksize
NBMAX = ILAENV( 1, 'CHETRF', UPLO, N, -1, -1, -1 )
IF ( NBMAX .GE. N ) THEN
MINSIZE = N
ELSE
MINSIZE = (N+NBMAX+1)*(NBMAX+3)
END IF
*
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF (LWORK .LT. MINSIZE .AND. .NOT.LQUERY ) THEN
INFO = -7
END IF
*
* Quick return if possible
*
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CHETRI2', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
WORK(1)=MINSIZE
RETURN
END IF
IF( N.EQ.0 )
$ RETURN
IF( NBMAX .GE. N ) THEN
CALL CHETRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
ELSE
CALL CHETRI2X( UPLO, N, A, LDA, IPIV, WORK, NBMAX, INFO )
END IF
RETURN
*
* End of CHETRI2
*
END
|