summaryrefslogtreecommitdiff
path: root/SRC/chetri2.f
blob: 59640061262d8091b5d2bf62e4c5b57a3705bb20 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
      SUBROUTINE CHETRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*  -- Written by Julie Langou of the Univ. of TN    --
*
* @generated c
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, LWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            A( LDA, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CHETRI2 computes the inverse of a COMPLEX hermitian indefinite matrix
*  A using the factorization A = U*D*U**T or A = L*D*L**T computed by
*  CHETRF. CHETRI2 set the LEADING DIMENSION of the workspace
*  before calling CHETRI2X that actually computes the inverse.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the details of the factorization are stored
*          as an upper or lower triangular matrix.
*          = 'U':  Upper triangular, form is A = U*D*U**T;
*          = 'L':  Lower triangular, form is A = L*D*L**T.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          On entry, the NB diagonal matrix D and the multipliers
*          used to obtain the factor U or L as computed by CHETRF.
*
*          On exit, if INFO = 0, the (symmetric) inverse of the original
*          matrix.  If UPLO = 'U', the upper triangular part of the
*          inverse is formed and the part of A below the diagonal is not
*          referenced; if UPLO = 'L' the lower triangular part of the
*          inverse is formed and the part of A above the diagonal is
*          not referenced.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  IPIV    (input) INTEGER array, dimension (N)
*          Details of the interchanges and the NB structure of D
*          as determined by CHETRF.
*
*  WORK    (workspace) COMPLEX array, dimension (N+NB+1)*(NB+3)
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*          WORK is size >= (N+NB+1)*(NB+3)
*          If LDWORK = -1, then a workspace query is assumed; the routine
*           calculates:
*              - the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array,
*              - and no error message related to LDWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
*               inverse could not be computed.
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            UPPER, LQUERY
      INTEGER            MINSIZE, NBMAX
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           LSAME, ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           CHETRI2X
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      LQUERY = ( LWORK.EQ.-1 )
*     Get blocksize
      NBMAX = ILAENV( 1, 'CHETRF', UPLO, N, -1, -1, -1 )
      IF ( NBMAX .GE. N ) THEN
         MINSIZE = N
      ELSE
         MINSIZE = (N+NBMAX+1)*(NBMAX+3)
      END IF
*
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF (LWORK .LT. MINSIZE .AND. .NOT.LQUERY ) THEN
         INFO = -7
      END IF
*
*     Quick return if possible
*
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CHETRI2', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         WORK(1)=MINSIZE
         RETURN
      END IF
      IF( N.EQ.0 )
     $   RETURN
      
      IF( NBMAX .GE. N ) THEN
         CALL CHETRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
      ELSE
         CALL CHETRI2X( UPLO, N, A, LDA, IPIV, WORK, NBMAX, INFO )
      END IF
      RETURN
*
*     End of CHETRI2
*
      END