summaryrefslogtreecommitdiff
path: root/SRC/chetrd_he2hb.f
blob: c6be3459cedfe3fc746b5541f85ce36169770b6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
*> \brief \b CHETRD_HE2HB
*
*  @generated from zhetrd_he2hb.f, fortran z -> c, Wed Dec  7 08:22:40 2016
*      
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download CHETRD_HE2HB + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetrd.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetrd.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetrd.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CHETRD_HE2HB( UPLO, N, KD, A, LDA, AB, LDAB, TAU, 
*                              WORK, LWORK, INFO )
*
*       IMPLICIT NONE
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, LDA, LDAB, LWORK, N, KD
*       ..
*       .. Array Arguments ..
*       COMPLEX            A( LDA, * ), AB( LDAB, * ), 
*                          TAU( * ), WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CHETRD_HE2HB reduces a complex Hermitian matrix A to complex Hermitian
*> band-diagonal form AB by a unitary similarity transformation:
*> Q**H * A * Q = AB.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangle of A is stored;
*>          = 'L':  Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*>          KD is INTEGER
*>          The number of superdiagonals of the reduced matrix if UPLO = 'U',
*>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
*>          The reduced matrix is stored in the array AB.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
*>          N-by-N upper triangular part of A contains the upper
*>          triangular part of the matrix A, and the strictly lower
*>          triangular part of A is not referenced.  If UPLO = 'L', the
*>          leading N-by-N lower triangular part of A contains the lower
*>          triangular part of the matrix A, and the strictly upper
*>          triangular part of A is not referenced.
*>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
*>          of A are overwritten by the corresponding elements of the
*>          tridiagonal matrix T, and the elements above the first
*>          superdiagonal, with the array TAU, represent the unitary
*>          matrix Q as a product of elementary reflectors; if UPLO
*>          = 'L', the diagonal and first subdiagonal of A are over-
*>          written by the corresponding elements of the tridiagonal
*>          matrix T, and the elements below the first subdiagonal, with
*>          the array TAU, represent the unitary matrix Q as a product
*>          of elementary reflectors. See Further Details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] AB
*> \verbatim
*>          AB is COMPLEX array, dimension (LDAB,N)
*>          On exit, the upper or lower triangle of the Hermitian band
*>          matrix A, stored in the first KD+1 rows of the array.  The
*>          j-th column of A is stored in the j-th column of the array AB
*>          as follows:
*>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= KD+1.
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*>          TAU is COMPLEX array, dimension (N-KD)
*>          The scalar factors of the elementary reflectors (see Further
*>          Details).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension LWORK.
*>          On exit, if INFO = 0, or if LWORK=-1, 
*>          WORK(1) returns the size of LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK which should be calculated
*           by a workspace query. LWORK = MAX(1, LWORK_QUERY)
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*>          LWORK_QUERY = N*KD + N*max(KD,FACTOPTNB) + 2*KD*KD
*>          where FACTOPTNB is the blocking used by the QR or LQ
*>          algorithm, usually FACTOPTNB=128 is a good choice otherwise
*>          putting LWORK=-1 will provide the size of WORK.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2016
*
*> \ingroup complexHEcomputational
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  Implemented by Azzam Haidar.
*>
*>  All details are available on technical report, SC11, SC13 papers.
*>
*>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
*>  Parallel reduction to condensed forms for symmetric eigenvalue problems
*>  using aggregated fine-grained and memory-aware kernels. In Proceedings
*>  of 2011 International Conference for High Performance Computing,
*>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
*>  Article 8 , 11 pages.
*>  http://doi.acm.org/10.1145/2063384.2063394
*>
*>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
*>  An improved parallel singular value algorithm and its implementation 
*>  for multicore hardware, In Proceedings of 2013 International Conference
*>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
*>  Denver, Colorado, USA, 2013.
*>  Article 90, 12 pages.
*>  http://doi.acm.org/10.1145/2503210.2503292
*>
*>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
*>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
*>  calculations based on fine-grained memory aware tasks.
*>  International Journal of High Performance Computing Applications.
*>  Volume 28 Issue 2, Pages 196-209, May 2014.
*>  http://hpc.sagepub.com/content/28/2/196 
*>
*> \endverbatim
*>
*> \verbatim
*>
*>  If UPLO = 'U', the matrix Q is represented as a product of elementary
*>  reflectors
*>
*>     Q = H(k)**H . . . H(2)**H H(1)**H, where k = n-kd.
*>
*>  Each H(i) has the form
*>
*>     H(i) = I - tau * v * v**H
*>
*>  where tau is a complex scalar, and v is a complex vector with
*>  v(1:i+kd-1) = 0 and v(i+kd) = 1; conjg(v(i+kd+1:n)) is stored on exit in
*>  A(i,i+kd+1:n), and tau in TAU(i).
*>
*>  If UPLO = 'L', the matrix Q is represented as a product of elementary
*>  reflectors
*>
*>     Q = H(1) H(2) . . . H(k), where k = n-kd.
*>
*>  Each H(i) has the form
*>
*>     H(i) = I - tau * v * v**H
*>
*>  where tau is a complex scalar, and v is a complex vector with
*>  v(kd+1:i) = 0 and v(i+kd+1) = 1; v(i+kd+2:n) is stored on exit in
*   A(i+kd+2:n,i), and tau in TAU(i).
*>
*>  The contents of A on exit are illustrated by the following examples
*>  with n = 5:
*>
*>  if UPLO = 'U':                       if UPLO = 'L':
*>
*>    (  ab  ab/v1  v1      v1     v1    )              (  ab                            )
*>    (      ab     ab/v2   v2     v2    )              (  ab/v1  ab                     )
*>    (             ab      ab/v3  v3    )              (  v1     ab/v2  ab              )
*>    (                     ab     ab/v4 )              (  v1     v2     ab/v3  ab       )
*>    (                            ab    )              (  v1     v2     v3     ab/v4 ab )
*>
*>  where d and e denote diagonal and off-diagonal elements of T, and vi
*>  denotes an element of the vector defining H(i).
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE CHETRD_HE2HB( UPLO, N, KD, A, LDA, AB, LDAB, TAU, 
     $                         WORK, LWORK, INFO )
*
      IMPLICIT NONE
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2016
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, LDAB, LWORK, N, KD
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), AB( LDAB, * ), 
     $                   TAU( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               RONE
      COMPLEX            ZERO, ONE, HALF
      PARAMETER          ( RONE = 1.0E+0,
     $                   ZERO = ( 0.0E+0, 0.0E+0 ),
     $                   ONE = ( 1.0E+0, 0.0E+0 ),
     $                   HALF = ( 0.5E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, UPPER
      INTEGER            I, J, IINFO, LWMIN, PN, PK, LK,
     $                   LDT, LDW, LDS2, LDS1, 
     $                   LS2, LS1, LW, LT,
     $                   TPOS, WPOS, S2POS, S1POS
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, CHER2K, CHEMM, CGEMM,
     $                   CLARFT, CGELQF, CGEQRF, CLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN, MAX
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV 
      EXTERNAL           LSAME, ILAENV
*     ..
*     .. Executable Statements ..
*
*     Determine the minimal workspace size required 
*     and test the input parameters
*
      INFO   = 0
      UPPER  = LSAME( UPLO, 'U' )
      LQUERY = ( LWORK.EQ.-1 )
      LWMIN  = ILAENV( 20, 'CHETRD_HE2HB', '', N, KD, -1, -1 )
      
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( KD.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDAB.LT.MAX( 1, KD+1 ) ) THEN
         INFO = -7
      ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
         INFO = -10
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CHETRD_HE2HB', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         WORK( 1 ) = LWMIN
         RETURN
      END IF
*
*     Quick return if possible        
*     Copy the upper/lower portion of A into AB 
*
      IF( N.LE.KD+1 ) THEN
          IF( UPPER ) THEN
              DO 100 I = 1, N
                  LK = MIN( KD+1, I )
                  CALL CCOPY( LK, A( I-LK+1, I ), 1, 
     $                            AB( KD+1-LK+1, I ), 1 )
  100         CONTINUE
          ELSE
              DO 110 I = 1, N
                  LK = MIN( KD+1, N-I+1 )
                  CALL CCOPY( LK, A( I, I ), 1, AB( 1, I ), 1 )
  110         CONTINUE
          ENDIF
          WORK( 1 ) = 1
          RETURN
      END IF
*
*     Determine the pointer position for the workspace
*      
      LDT    = KD
      LDS1   = KD
      LT     = LDT*KD
      LW     = N*KD
      LS1    = LDS1*KD
      LS2    = LWMIN - LT - LW - LS1
*      LS2 = N*MAX(KD,FACTOPTNB) 
      TPOS   = 1
      WPOS   = TPOS  + LT
      S1POS  = WPOS  + LW
      S2POS  = S1POS + LS1 
      IF( UPPER ) THEN
          LDW    = KD
          LDS2   = KD
      ELSE
          LDW    = N
          LDS2   = N
      ENDIF
*
*
*     Set the workspace of the triangular matrix T to zero once such a
*     way everytime T is generated the upper/lower portion will be always zero  
*   
      CALL CLASET( "A", LDT, KD, ZERO, ZERO, WORK( TPOS ), LDT )
*
      IF( UPPER ) THEN
          DO 10 I = 1, N - KD, KD
             PN = N-I-KD+1
             PK = MIN( N-I-KD+1, KD )
*        
*            Compute the LQ factorization of the current block
*        
             CALL CGELQF( KD, PN, A( I, I+KD ), LDA,
     $                    TAU( I ), WORK( S2POS ), LS2, IINFO )
*        
*            Copy the upper portion of A into AB
*        
             DO 20 J = I, I+PK-1
                LK = MIN( KD, N-J ) + 1
                CALL CCOPY( LK, A( J, J ), LDA, AB( KD+1, J ), LDAB-1 )
   20        CONTINUE
*                
             CALL CLASET( 'Lower', PK, PK, ZERO, ONE, 
     $                    A( I, I+KD ), LDA )
*        
*            Form the matrix T
*        
             CALL CLARFT( 'Forward', 'Rowwise', PN, PK,
     $                    A( I, I+KD ), LDA, TAU( I ), 
     $                    WORK( TPOS ), LDT )
*        
*            Compute W:
*             
             CALL CGEMM( 'Conjugate', 'No transpose', PK, PN, PK,
     $                   ONE,  WORK( TPOS ), LDT,
     $                         A( I, I+KD ), LDA,
     $                   ZERO, WORK( S2POS ), LDS2 )
*        
             CALL CHEMM( 'Right', UPLO, PK, PN,
     $                   ONE,  A( I+KD, I+KD ), LDA,
     $                         WORK( S2POS ), LDS2,
     $                   ZERO, WORK( WPOS ), LDW )
*        
             CALL CGEMM( 'No transpose', 'Conjugate', PK, PK, PN,
     $                   ONE,  WORK( WPOS ), LDW,
     $                         WORK( S2POS ), LDS2,
     $                   ZERO, WORK( S1POS ), LDS1 )
*        
             CALL CGEMM( 'No transpose', 'No transpose', PK, PN, PK,
     $                   -HALF, WORK( S1POS ), LDS1, 
     $                          A( I, I+KD ), LDA,
     $                   ONE,   WORK( WPOS ), LDW )
*             
*        
*            Update the unreduced submatrix A(i+kd:n,i+kd:n), using
*            an update of the form:  A := A - V'*W - W'*V
*        
             CALL CHER2K( UPLO, 'Conjugate', PN, PK,
     $                    -ONE, A( I, I+KD ), LDA,
     $                          WORK( WPOS ), LDW,
     $                    RONE, A( I+KD, I+KD ), LDA )
   10     CONTINUE
*
*        Copy the upper band to AB which is the band storage matrix
*
         DO 30 J = N-KD+1, N
            LK = MIN(KD, N-J) + 1
            CALL CCOPY( LK, A( J, J ), LDA, AB( KD+1, J ), LDAB-1 )
   30    CONTINUE
*
      ELSE
*
*         Reduce the lower triangle of A to lower band matrix
*        
          DO 40 I = 1, N - KD, KD
             PN = N-I-KD+1
             PK = MIN( N-I-KD+1, KD )
*        
*            Compute the QR factorization of the current block
*        
             CALL CGEQRF( PN, KD, A( I+KD, I ), LDA,
     $                    TAU( I ), WORK( S2POS ), LS2, IINFO )
*        
*            Copy the upper portion of A into AB 
*        
             DO 50 J = I, I+PK-1
                LK = MIN( KD, N-J ) + 1
                CALL CCOPY( LK, A( J, J ), 1, AB( 1, J ), 1 )
   50        CONTINUE
*                
             CALL CLASET( 'Upper', PK, PK, ZERO, ONE, 
     $                    A( I+KD, I ), LDA )
*        
*            Form the matrix T
*        
             CALL CLARFT( 'Forward', 'Columnwise', PN, PK,
     $                    A( I+KD, I ), LDA, TAU( I ), 
     $                    WORK( TPOS ), LDT )
*        
*            Compute W:
*             
             CALL CGEMM( 'No transpose', 'No transpose', PN, PK, PK,
     $                   ONE, A( I+KD, I ), LDA,
     $                         WORK( TPOS ), LDT,
     $                   ZERO, WORK( S2POS ), LDS2 )
*        
             CALL CHEMM( 'Left', UPLO, PN, PK,
     $                   ONE, A( I+KD, I+KD ), LDA,
     $                         WORK( S2POS ), LDS2,
     $                   ZERO, WORK( WPOS ), LDW )
*        
             CALL CGEMM( 'Conjugate', 'No transpose', PK, PK, PN,
     $                   ONE, WORK( S2POS ), LDS2,
     $                         WORK( WPOS ), LDW,
     $                   ZERO, WORK( S1POS ), LDS1 )
*        
             CALL CGEMM( 'No transpose', 'No transpose', PN, PK, PK,
     $                   -HALF, A( I+KD, I ), LDA,
     $                         WORK( S1POS ), LDS1,
     $                   ONE, WORK( WPOS ), LDW )
*             
*        
*            Update the unreduced submatrix A(i+kd:n,i+kd:n), using
*            an update of the form:  A := A - V*W' - W*V'
*        
             CALL CHER2K( UPLO, 'No transpose', PN, PK,
     $                    -ONE, A( I+KD, I ), LDA,
     $                           WORK( WPOS ), LDW,
     $                    RONE, A( I+KD, I+KD ), LDA )
*            ==================================================================
*            RESTORE A FOR COMPARISON AND CHECKING TO BE REMOVED
*             DO 45 J = I, I+PK-1
*                LK = MIN( KD, N-J ) + 1
*                CALL CCOPY( LK, AB( 1, J ), 1, A( J, J ), 1 )
*   45        CONTINUE
*            ==================================================================
   40     CONTINUE
*
*        Copy the lower band to AB which is the band storage matrix
*
         DO 60 J = N-KD+1, N
            LK = MIN(KD, N-J) + 1
            CALL CCOPY( LK, A( J, J ), 1, AB( 1, J ), 1 )
   60    CONTINUE

      END IF
*
      WORK( 1 ) = LWMIN
      RETURN
*
*     End of CHETRD_HE2HB
*
      END